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ABSTRACT 

In this study, investigations are carried out from the speech 

waveform of the patients whose vocal folds vibration pattern has 

been affected by the presence of nodules and polyp. Acoustic, 

pitch and amplitude perturbation quotients, and nonlinear dynamic 

measures, phase space reconstruction and correlation dimension, 

are scrutinized to analyze a sustained vowel pronounced by these 

individuals. It is found that the cycle-to-cycle pitch frequency and 

amplitude variation in the case of polyp is higher than nodules. It 

is also demonstrated that patients’ voice signals with nodules, in 

comparison with polyp, has lower-dimensional phase space 

dynamical characteristics. Classification procedure implemented 

using support vector machine shows that nonlinear dynamical 

features provide us with a more prominent description of such 

benign vocal fold pathologies as a valuable tool for clinical 

diagnosis applications. 

1. INTRODUCTION 

The effect of voice pathologies caused by physiological alterations 

of the vocal cords is a very important issue due to the unhealthy 

pattern of cords’ vibration and the decrease in patients’ speech 

signal quality. In addition, the detection of incipient damages to 

the cords helps us in improving the prognosis, treatment and care 

of such pathologies. The information derived from the speech 

signal helps in the detection of vocal fold pathologies in their early 

stages of emergence, and also enables voice therapists and vocal 

fold surgeons in preventing them from progressing or becoming 

malign. Therefore, non-invasive methods as less expensive and 

more convenient solution to the problem of vocal fold disorder 

diagnosis play an important role in the clinical applications. 

In this paper two widespread types of benign vocal fold 

pathologies known as nodules and polyp are taken into considera-

tion. These laryngeal disorders are defined using specific entities 

by laryngologists and voice pathologists, based on their anatomic 

location and gross appearance [1]. They are both formed by 

inflammation caused by stress, trauma or irritation. A nodule is 

defined as a small lesion occurring on both sides of the vocal folds, 

strictly symmetric on their border of the anterior and middle third, 

and usually immobile during phonation. A polyp is defined as a 

lesion on the anterior third of the folds. It may be sessile or pedun-

culated and, if pedunculated, very mobile. Ottolaryngologists and 

voice pathologists agree that nodules and polyp are distinguishable 

based on their location and size [1]. A biopsy larger than 0.3 cm 

could be a polyp and a biopsy less than 0.3 cm could be a nodule. 

It is also stated that there is no definitive histological distinction 

between them. In most of the cases, these lesions are present 

exactly at the hourglass-like gap between both folds. 

The harmful effect of such vocal fold disorders causes the 

glottis fissure to remain continuously open so that the patients are 

confronted by resulted difficulties in breathing, coughing, and even 

speaking. During the closing phase of folds’ vibration, the 

presence of nodules and polyp on the outer layer of vocal folds’ 

tissue inhibits them from being completely folded on each other. 

This effect would be evident in the glottal waveform and the 

audible quality of patients’ speech signal. Because the vibration 

pattern of vocal folds, excited by the air flow running through the 

glottis, is an important indicator of laryngeal function, any 

abnormality of the larynx will be evident by tracking the speech 

signal characteristic variations which often assume the aspect of 

noise. Incomplete closure of the vocal folds, glottal air leakage and 

their asymmetrical vibration, due to their biomechanical parameter 

alterations, are responsible for pitch frequency and air flow volume 

changes, amplitude and mucosal wave reduction and the noise-like 

turbulence of airflow in vicinity of nodules and polyp [2].  

In this study, the effect of vocal fold nodules and polyp on the 

acoustic perturbation and nonlinear dynamical feature variations in 

patients’ speech signal is investigated. 

2. MATERIALS AND METHODS 

2.1. Database 

The voice samples examined in this study were selected from the 

Disordered Voice Database [3], model 4337, version 1.03 (Kay 

Elemetrics Corporation, Lincoln Park, NJ), developed by the 

Massachusetts Eye and Ear Infirmary Voice and Speech Lab. This 

database includes 19 samples of vocal fold nodules and 20 samples 

from patients with vocal fold polyp. Subjects were asked to sustain 

the vowel /a/ and voice recordings were made in a soundproof 

booth on a DAT recorder at a sampling frequency of 44.1 kHz.  

2.2. Acoustic Perturbation Analysis 

The acoustic perturbation parameters for estimating the property 

variation of pathological voices are measured during phonation of 

sustained vowels. These parameters define the degree of cycle-to-

cycle instability of amplitude and pitch, and indicate the level of 

aperiodic components, predicted by the presence of turbulent 

noise, frequency and amplitude modulations of voice signal due to 

the alterations in biomechanical properties of the vocal folds. 

Measures of acoustic perturbation including pitch and amplitude 

perturbation quotients, known as PPQ and APQ, provide a 
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quantitative assessment of vocal quality. These parameters refer to 

the measurement of cycle-to-cycle variation in the fundamental 

frequency and amplitude of a voice signal at a specific number of 

periods. In general the perturbation quotient of any quantity can be 

calculated as follows [4]:  
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In which U can be the frequency or amplitude, N is the total 

number of cycles and K refers to the length of the windowed 

signal. As the precise calculation of PPQ and APQ measures for 

acoustic analysis of a voice signal in time domain strongly depends 

on the detection of each glottal cycle and its duration, an accurate 

pitch detection algorithm referred to as modified cepstrum, 

proposed by Mitev and Hadjitodorov [5], is used to estimate the 

initial and final points of each glottal cycle in the speech signals. 

2.3. Phase space dynamics analysis 

The descriptions of nonlinear systems are based substantially on 

analyses of their behaviors in their phase space [6]. Phase space is 

an abstract mathematical space spanned by the dynamical 

variables of the system. The state of the dynamical system at a 

given instant in time can be represented by a point in this space. 

The dynamical variable changes in time traces out a path in the 

phase space in which the aperiodic or chaotic behavior can be 

observed.

In signal processing concerns, a chaotic signal is defined as a 

signal produces by an autonomous chaotic system in response to 

an initial condition that leads to aperiodic behavior [7]. The typical 

application involves observing a signal from a nonlinear system 

and attempting to classify it as chaotic or non-chaotic and to 

determine some quantitative measure of the degree of chaos. As 

these goals are especially difficult to accomplish, there are some 

auxiliary methods which, in combination, can increase the 

likelihood of a correct classification and provide an approximate 

measure of the degree of chaos. One of the most common of these 

methods is the calculation of the signal’s correlation dimension in 

its phase space. To permit calculation of this invariant measure it is 

necessary to construct an attractor in a space of sufficiently high 

dimension using the observed signal, a process known as phase 

space embedding. This process proceeds as follows: 

Suppose x(t) is sampled at the rate fs such that N-data points 

x[n], 10 Nn , are obtained. To construct an embedding in 

mR , data vectors jx  , ,0 kmNj  are created as: 

T
j kmjxkjxkjxjxx ])1([],...,2[],[],[ (2) 

where k is a delay that is chosen through minimizing the average 

mutual information between x[ j] and x[ j+k], [8]. The objective in 

the choice of lag k is to ensure that all m various coordinates of 

each xj vector convey independent information. By using each xj

which defines a point in mR  a pseudo phase plot, known as phase 

space plot, is constructed. The choice of the correct embedding 

dimension, m, is also nontrivial and there is not general agreement 

regarding the best method. One of the most common approaches 

which search for the optimum embedding dimension is referred to 

as the method of false nearest neighbors discussed in [7]. 

Knowledge of the dimension of the attractor of a phase plot 

provides important information about a signal and the system from 

which it emanates. The higher the dimension the more spatially 

complex is the structure of the attractor. It can be inferred that the 

complexity degree of a signal increases with its dimension 

consequently [9]. If the dimension is non-integer, then the attractor 

has a fractal structure and the phase plot demonstrates irregular 

motion. If one can obtain a long data record when dealing with real 

data, often a sufficiently reproducible estimate of dimension can be 

obtained so that one may distinguish between signals whose 

dimensions differ by a specific threshold. 

Calculation of signal’s correlation dimension in its phase 

space is a common way in estimating the signal’s degree of chaos. 

It is based on the concept of how densely the points on an attractor 

aggregate around one another and its calculation can be related to 

the relative frequency with which the attractor visits each covering 

element. Given a data time series that has been embedded in a 

space mR , the Euclidian distance measure can be represented using 

m-dimensional embedding vectors ],...,,[ 21 imiii xxxx , in 

which indexes are represented by 
sm ktmii )1( . An 

alternative distance measure which is much faster to calculate, is 

the maximum distance between corresponding components of xi

and xj as [7]: 
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Using the chosen distance measure, the correlation integral 

function, )(rC m , can be defined as [9]: 
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In which the Heavy-side function is as follows: 
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This means that the correlation integral function is determined by 

making a hyper-sphere of radius r around every embedded data 

point and counting the average number of embedded data points 

inside this hyper-sphere. This function is a type of spatial 

correlation because it expresses the extent to which embedded data 

points are close together.  

In this study, the correlation dimension is calculated by an 

easier way of computing the correlation integral known as 

Grassberger-Procaccia algorithm [10]. It assumes that the probab-

ility of two points in the set which are in hyper-sphere of size r is 

approximately equal to the probability that two points of the same 

set are separated by a Euclidian distance as less than or equal to r :  
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Assuming that the number of points in the hyper-sphere should be 

proportional to the radius of the corresponding hyper-sphere raised 

to the power Dc ,where Dc is the dimension estimation referred to 

as the correlation dimension, therefore correlation integral should 

be proportional to CD
r . By setting CDm rVrC .)( , we have: 
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The estimation of the correlation dimension from data 

confronts some limitations. First, there is a limited range over 

which the correlation dimension can be evaluated because when r

approaches the size of the phase plot, the calculated correlation 
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function plateaus and also for very small values of r the effects of 

noise and finite resolution dominate in calculated correlation 

integral. For such reasons it is necessary to compute the correlation 

integral function over a wide range of r and then search for more 

limited range of radius over which the estimate of dimension stays 

consistent [7]. This is accomplished by plotting the )(ln rC

versus )ln(r and finding the range for r over which this function 

is reasonably linear. This linearity can be more accurately 

determined by calculating the slope of the )(ln rC versus 

)ln(r function and evaluating the range of r for which the slope is 

nearly constant. The average slope over this range would be a 

reliable estimation for
CD , the correlation dimension [7]. Even 

when a good estimate of correlation dimension is acquired, a 

second issue should be resolved which is the proper embedding 

dimension used to calculate
CD . The invariant measures of an 

attractor of dimension d theoretically can be recovered completely 

in a space of dimension 2d+1. The usual solution is to evaluate 

CD as a function of m, the embedding dimension, as it is increased 

until the estimated dimension ceases to increase as m increases 

further. This convergence of estimates may occur for 

12dmd .

2.4. Support vector machine 

In order to classify the extracted acoustic perturbation and 

nonlinear dynamic features, SVM classifier is hired to determine 

which of these features can best differentiate nodules cases from 

polyp. SVM is a new technique in the field of statistical learning 

theory which was proposed by Vapinik [11]. It is based on the 

structural risk minimization principle (SRM) in which two main 

objectives is pursued. The first is to control the empirical risk on 

the training data set. The second is to control the capacity of the 

decision functions used to obtain this risk value. It is a method of 

training polynomials, radial basis function, or multilayer 

perceptron classifiers, in which the weights of the network are 

found by solving a quadratic programming problem (QP) with 

linear inequality and equality constraints.  

Assume that the training data with k number of samples are 

represented by kiyx ii ,....,1},,{ , where nRx is an n-

dimensional vector and }1,1{y  is the class label. The aim 

is to find a hyper-plane that divides the data so that all the points 

with the same label are on the same side of the hyper-plane. This 

depends on finding w and b such that: 

0).( bxwy ii (8) 

If a hyper-plane exists that satisfies (8), the two classes are said to 

be linearly separable. 

The SVM finds the hyper-plane with maximum Euclidian 

distance from the training set. According to the SRM principle, 

there will be just one optimal hyper-plane with a specific maximal 

margin, defined as the sum of distances from the hyper-plane to 

the closest points of each class. This linear classifier threshold is 

the optimal separating hyper-plane, referred to as OSH. In case of 

linearly separable classes, it is possible to rescale w and b so that: 

1).(min
1

bxwy ii
ki

(9) 

Therefore, (8) can be revised as below: 

1).( bxwy ii (10)

Regarding (10), distance to the closest point is 1/||w|| and the OSH 

can be found by minimizing ||w||2 under constraint (9). The 

minimization procedure uses Lagrange multipliers and quadratic 

programming (QP) optimization methods [11]. 

In the case of non-separable training sets, the i-th data point 

has a slack variable
i
, which represents the magnitude of the 

classification error. A penalty function f(n) represents the sum of 

these misclassification errors as: 

(11)
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In this case (10) can be written as follows: 

1).( iii bxwy (12)

The SVM solution can be found by keeping the upper bound on 

the VC dimension small and by minimizing an upper bound on the 

empirical risk, for example the number of training errors with the 

following minimization, under constraint (12): 
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The first term in (13) is the same as in the linearly separable case 

to control the learning capacity, while the second term controls the 

number of misclassified points. The regularization constant C>0 

determines the trade-off between the empirical error and the 

complexity term. Parameter C is chosen by the user and a large C 

corresponding to the assignment of a higher penalty to errors. 

3. EXPERIMENTAL RESULT 

The PPQ, APQ and correlation dimension features are extracted 

from 39 sample records, with the approximate length of 1 second 

(more than 40,000 samples), from the patients’ speech signal with 

vocal fold nodules and polyp (19 with nodules and 20 with polyp). 

The pitch period detection is implemented using the modified 

cepstrum method discussed in [5]. PPQ and APQ features, as 

acoustic perturbation measures, are calculated at smoothing factor 

of 5 and 11 periods, respectively. Correlation dimension is also 

hired to describe the nonlinear dynamical characteristics of all 

voice samples. Figure1 shows the slope of the ln(C(r)) against ln(r)

where the curves from bottom to top correspond to the ascending 

embedding dimensions, m. The limited range of r over which the 

slope value, by increasing the embedding dimension m, saturates is 

also marked in this figure. Then correlation dimension measure is 

estimated in the embedding dimension after which the slope value 

remains constant (Figure2).  

Table.1 shows the statistical measures for the extracted 

features from these two types of laryngeal disorders. It shows that 

the presence of polyp on the vocal fold tissue leads to the higher 

mean value for pitch and amplitude perturbation quotients. The 

estimated mean value for correlation dimension also demonstrates 

the low dimensional and, therefore, less complex characteristics of 

the phase space attractors in the speech signals of the patients with 

nodules in comparison with polyp.  

Table1- Mean and variance of features for nodules and polyp 

Vocal fold nodules Vocal fold polyp 

mean variance mean Variance 

PPQ 0.77 0.22 1.49 5.85 

APQ 3.41 1.39 5.22 10.03 

D2 1.72 0.16 2.66 1.46 
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Figure1-Slope of correlation integral function vs. radius in 

logarithmic scale for (a) one nodules case (b) one polyp case 
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Figure2- Correlation dimension vs. embedding dimension for the 

specified range of radius for the nodules and polyp cases of fig.1  

The result of SVM implementation for the classification of 

these two types of laryngeal disorders is shown in Figure3. 

In this procedure 60% of feature sets are selected as training 

data set and the remaining for test. It is shown that for all 3 

tested SVM kernels, correlation dimension, as a nonlinear 

dynamical feature, leads to the highest correct classification 

percentage in differentiating vocal fold nodules from polyp. 
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Figure3- nodules & polyp classification using three SVM kernels 

4. DISCUSSION 

It has been stated that the presence of nodules and polyp on the 

outer layer of vocal folds’ tissue leads to the alteration in normal 

vibration pattern of the cords, and consequently, the waveform of 

the patients’ speech signal. These effects are caused by the 

consistent opening of the glottal gap and the variation in 

biomechanical parameters of the cords, resulting in the glottal air 

leakage, vortex flows, asymmetrical vibration and the pitch or 

amplitude perturbations. Acoustic measures are mostly useful for 

describing the differences between the negative effects of nodules 

and polyp on the cycle-to-cycle variation of pitch frequency and 

the amplitude of patients’ speech signal. However, it has been 

expressed that the nonlinear dynamic features are responsible for 

understanding the degree of the chaotic behavior of the patients’ 

speech signals. It is also demonstrated that the correlation 

dimension constitutes a more reliable set of features to express the 

differences in the degree of complexity which is imposed on the 

behavior of the signals’ phase space attractor. Due to their smaller 

size and anatomical location, nodules lead to less chaotic behavior 

of the signals in their phase space. The differences in the number 

of nonlinear variables, used to describe the attractors’ behavior, for 

nodules and polyp is more substantial than their effect on the 

signals’ PPQ and APQ features. The supreme ability of nonlinear 

dynamic features, regarding the acoustic perturbation ones, leads 

to the higher correct classification rate in making distinguishes 

between vocal fold nodules and polyp cases.  

5. CONCLUSION 

In this paper the ability of PPQ, APQ and correlation dimension 

features in describing the pathological effect of nodules and polyp 

on the vibration pattern of vocal folds have been discussed. The 

classification procedure using SVM showed that the correlation 

dimension feature, by estimating the degree of chaotic behavior in 

signals’ phase space, provides us with a better explanation of the 

differences in the negative effect of such vocal folds’ lesions. In 

comparison with the acoustic perturbation measures, it is 

concluded that the nonlinear dynamic features, play a more 

important role in the clinical diagnosis of vocal fold disorders such 

as nodules and polyp.  
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