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ABSTRACT

This paper reports on a new EEG re-referencing scheme, known
as the circular Laplacian, for processing multichannel EEG
signals. The new reference signals are derived from the aver-
age potentials on the circles around the electrodes. The radii
of the circles can be adjusted to achieve spatial filtering of
EEG at different frequencies. Evaluation with motor imagery
recordings suggests that the circular Laplacian leads to a max-
imum of 5% improvement over the traditional discrete Lapla-
cian in a motor imagery classification task.

1. INTRODUCTION

Imagination of body movements (motor imagery) generates
measurable changes in the scalp-recorded electroencephalo-
graph (EEG). Depending on the part of the body imagined
moving, these changes concentrate on different regions of
the brain. This phenomenon has been extensively employed
in brain-computer interfaces (BCI) [1]. These systems train
subjects to associate their imaginations with their intentions.
EEG generated by the imaginations are then decoded into
control signals for driving wheelchairs or computer applica-
tions. The independence of BCI systems from muscle control
makes it promising for helping those severely paralyzed [2].

BCI systems usually record EEG signals with multiple
channels according to the international standard placement.
This standard setting approximates the head with a sphere
and determines the electrode positions by dividing the great
circles and small circles into 5%, 10% or 20% portions [3].
Due to these different portions, the electrodes are not evenly
spaced on scalp. Especially when only a subset of the elec-
trodes are used, it is not always possible to find equidistant
neighbors surrounding a given electrode.

EEG potentials can be viewed as a blurred version of the
cortical activities. This is due to the diffusion of the skull
and the skin. To recover the focal activities, EEG potentials
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are commonly re-referenced with a discrete Laplacian [4, 5],
which approximates the two dimensional Laplacian operator
∆ = ∂2

∂x2 + ∂2

∂y2 . Suppose that the EEG potential at an elec-
trode e0 is U(e0) (e0 is also used to denote the position vec-
tor). Then its discrete Laplacian LU can be expressed as

LU(e0) = −U(e0) +
1

|N |
∑
e∈N

U(e), (1)

where N is the set of neighboring electrodes of e0, and |N |
is the number of elements in N . Ideally, these neighboring
electrodes should surround e0 and be equidistant from e0 (see
right side of Fig 1). However, as mentioned above, such an
arrangement is not always possible for the standard electrode
placement. Especially for the border electrodes, all of their
neighbors will clutter to one side and this results in poor ap-
proximation of the Laplacian [6].

To avoid this problem, some methods first interpolate EEG
potentials on the scalp, and then derive the analytical Lapla-
cians using the interpolation bases [7, 8, 9]. One of the most
commonly used scheme is proposed by Perrin et al.[7] They
used Legendre polynomials as the bases for interpolation, which
leads to a straightforward expression of the Laplacian. Com-
pared to the discrete Laplacian, the neighborhood in these
methods effectively shrinks to an infinitesimal one. Such a
Laplacian operator behaves like a high-pass filter, preserving
only highly localized and sharp changes in the potentials. The
neural electrical activities generated by the brain, however,
contain various spatial frequencies. Potentially useful infor-
mation from the middle frequencies may be filtered out by the
analytical Laplacian. This limitation motivates our derivation
of circular Laplacian.

The proposed circular Laplacian of an electrode e0 is de-
fined as

LU(e0) = −U(e0) +

∮
C U(e)ds∮

C ds
, (2)

where the integration is along a circle C around e0. This def-
inition changes the neighbourhood of e0 to a circle on the
sphere (see left side of Fig. 1). The Laplacian is computed
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by combining the potential at e0 and the average potential
along the circle. The radius of the circle will be referred to
as the angle φ, which is the angle between e0 and the posi-
tion vector of a point on the circle. Varying the radius of the
circle will allow us to focus on neural information at differ-
ent spatial frequencies. In the following sections, we will first
introduce Perrin’s spherical spline interpolation; then we will
show how the circular Laplacian can be computed efficiently
based on the spherical splines.

Fig. 1. Comparison between the discrete Laplacian and the
circular Laplacian. The discrete Laplacian (on the right side)
re-references the EEG potential at ei with electrodes sur-
rounding ei, while the new circular Laplacian re-references
the EEG with values from a circle (on the left side).

2. PERRIN’S SPHERICAL SPLINE

Perrin’s method [7] models the head as a unit sphere and em-
ploys a subset of the spherical harmonics as the bases for the
interpolation. This subset, known as Legendre polynomials,
can be expanded as:

Pn(x) =
1
2n

�n/2�∑
k=0

(−1)k

(
n

k

)(
2n − 2k

n

)
xn−2k. (3)

Using these bases, the potential at a point e on the sphere can
be interpolated as:

U(e) = c0 +
N∑

i=1

cig(cos(e, ei)), (4)

g(cos(e, ei)) =
1
4π

∞∑
n=1

2n + 1
(n(n + 1))m

Pn(cos(e, ei)), (5)

where the eis are the position of the N recording electrodes,
and cos(·, ·) computes the cosine of the angle between two
positions on the sphere. The c0 and ci are the interpolation
coefficients determined by the potentials U(ei) from the elec-
trodes. Two constraints govern the solution of these coef-
ficients: (i) The interpolated function has to pass the mea-
sured potentials at ei; (ii) the sum of ci has to be zero. These
constraints can be formulated into a system of linear equa-
tions and solved efficiently using singular value decomposi-
tion (SVD).

The analytical Laplacian can be easily computed from
equation (4) and (5), since the Laplacian of a Legendre poly-
nomial is simply a multiple of itself, i.e.

∆Pn = −n(n + 1)Pn. (6)

Substituting this into equation (5) results in the analytical Lapla-
cian:

LU(e) =
N∑

i=1

cih(cos(e, ei)), (7)

h(cos(e, ei)) =
1
4π

∞∑
n=1

2n + 1
(n(n + 1))m−1

Pn(cos(e, ei)). (8)

Perrin chose m = 4 based on simulations and the sum of the
first 20 terms in (8) for the computation (this guarantees an
precision of 10−6 for h(·)). Furthermore, since the Legendre
polynomials are only evaluated in the range [−1, 1], they are
tabulated for values regularly spaced between −1 and 1. This
reduces the computation of this Laplacian scheme.

3. CIRCULAR LAPLACIAN

3.1. Mathematical Derivation

In order to compute the circular Laplacian, the EEG poten-
tials along the paths of the integrations need to be available.
We use Perrin’s spherical spline to obtain the potentials along
these paths. Thus, the integrations in equation (2) can be ex-
pressed as:

∮
C

U(e)ds = c0

∮
C

ds +
N∑

i=1

ci

∮
C

g(cos(e, ei))ds,

∮
C

ds = 2π sin φ.

(9)

Now, the problem becomes how to integrate g(cos(e, ei)) and
thus Pn(cos(e, ei)) efficiently. Suppose that the circle is around
a point e0 = (x0, y0, z0) on the sphere, then points on the cir-
cle can be parameterized as (note: the center of the circle,
e0 cos φ, is inside the sphere):

e =

⎛
⎝x

y
z

⎞
⎠ =

⎛
⎝A D G

B E H
C F I

⎞
⎠

⎛
⎝cos t

sin t
1

⎞
⎠ (10)

where t ∈ [0, 2π) and F = 0,

A =
x0z0√
x2

0 + y2
0

sin φ, B =
y0z0√
x2

0 + y2
0

sin φ,

C = −
√

x2
0 + y2

0 sin φ, D = − y0√
x2

0 + y2
0

sin φ,

E =
x0√

x2
0 + y2

0

sin φ, G = x0 cos φ,

H = y0 cos φ, I = z0 cos φ.
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Then cos(e, ei), the inner product e · ei for points on a unit
sphere, can be denoted by:

cos(e, ei) = (xi, yi, zi)

⎛
⎝A D G

B E H
C F I

⎞
⎠

⎛
⎝cos t

sin t
1

⎞
⎠

= αi cos t + βi sin t + γi.
Substituting it into Pn(cos(e, ei)) and further applying the ex-
pansion of the Legendre polynomials from equation (3), we
obtain the integration

Pn =
∮
C

Pn(αi cos t + βi sin t + γi)ds =

1
2n

�n/2�∑
k=0

(−1)k

(
n

k

)(
2n − 2k

n

)
×

∑
l+j+h
=n−2k

(
n − 2k

l

)(
n − 2k − l

j

)
αl

iβ
j
i γ

h
i

∫ 2π

0

cos lt sin jtdt,

(11)
where
∫ 2π

0
cos lt sin jtdt =

⎧⎨
⎩

2Γ( 1+l
2 )Γ( 1+j

2 )

Γ( 2+l+j
2 )

, for even l and j

0, otherwise.

3.2. Efficient Implementation

The parameters, αi, βi and γi, encode the positional informa-
tion of the center e0 and the electrodes ei. Their values remain
unchanged irrespective of the measured potentials. Hence
they need to be computed only once. From equation (11),
it is clear that the integrations Pn are completely determined
by these parameters. Therefore they also need to be computed
only once.

Fast implementation of the integrationsPn can be achieved
by exploiting the commonalities between them. For example,
the Pn for even n all share 3 terms, e.g.

(
2
2

)(
0
0

)
α2

i β
0
i γ0

i

2Γ( 3
2 )Γ( 1

2 )
Γ( 4

2 )
,

(
2
0

)(
2
2

)
α0

i β
2
i γ0

i

2Γ( 1
2 )Γ( 3

2 )
Γ( 4

2 )
,

(
2
0

)(
2
0

)
α0

i β
0
i γ2

i

2Γ( 1
2 )Γ( 1

2 )
Γ( 2

2 )
.

which always appear in the same summation. As n goes
to larger numbers, the adjacent Pn will share more terms.
The argument applies similarly to odd n. In our implemen-
tation, all these shared terms are pre-computed, summed ac-
cordingly, and stored in a list. Subsequent computation of Pn

then reduces to simple additions and multiplications.
In summary, the circular Laplacian can be computed using

the following equation:

LU(e) = − U(e) + c0

+
1

8π2 sin φ

N∑
i=1

ci

∞∑
n=1

2n + 1
(n(n + 1))m

Pn.
(12)

Similar to Perrin’s spherical spline, the inner summation of
equation (12) need not go to infinity. The first 20 terms are
used in our implementation. The overall computation of the
circular Laplacian at a point e0 involves four steps: (i) Initial-
izeP1 up toP20 using the coordinates of e0 and the electrodes
ei (this need to be computed only once); (ii) Compute c0 and
ci using Perrin’s method; (iii) Compute the interpolated po-
tential U(e0) using Perrin’s method; (iv) Compute the circu-
lar Laplacian using equation (12). Compared to the analytical
Laplacian in (8), the only additional computation is in step
(iv). It involves only additions and multiplications of a few
real numbers, which can be done in a short time.

4. EVALUATION

4.1. Data Set

We use the EEG data from the Berlin BCI group [10] to com-
pare the performance of the circular Laplacian, the analytical
Laplacian and the discrete Laplacian. In this data set, five
healthy subjects were asked to carried out two types of mo-
tor imageries (eithor hand or foot movement). Each type of
imagination lasted 3.5 seconds and was repeated 140 times.
EEG signals for these imaginations were recorded with a cap
of 118 channels. The task was to classify the single trial EEGs
into two types. The performance was measured with the gen-
eralization errors of the classification. The lower the error the
better the performance of a method.

4.2. Feature Extraction and Classification

The feature extraction and classification process is depicted
in Fig. 2 (refer to [11] for further details). The only differ-
ence for the three schemes is the use of different Laplacian
filters. Spatially filtered EEG signals are then passed to the
same back-end feature extractor and classifier.

As described in [11], the features are the correlations of
the phases between multichannel EEGs, and the classifier is
a two-level linear Support Vector Machine(SVM). The phase
information can be computed using either wavelet analysis or
Hilbert transformation (the latter is used in this study). The
correlation of the phases between two channels in a time win-
dow τ can be quantified using the phase locking value (PLV),
i.e.

PLVij =
1
τ

∣∣∣∣∣
T∑

T−τ

ϕi[n]
ϕj [n]

∣∣∣∣∣ ∈ [0, 1], (13)

where ϕi[n] and ϕj [n] (both complex valued with unit mod-
ulus) are the phases at the sampled time points for channel i
and j respectively (n is the discrete time index here). PLV
measures the stability of the phase difference between two
channels. If the phase of the two channels exhibit correlated
behavior, the PLV will be high. PLV encodes information on
the interaction between different brain regions, and can be ex-
ploited to separate different motor imageries [11].
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Fig. 2. Block diagram for the classification of single trial
motor imagery. The classifications using the three Laplacian
schemes differ only in the first block of the diagram.

4.3. Result

The generalization errors were estimated using a 50×2-fold
cross validation, where the order of the trials is randomized
50 times. In each randomization, the trials are split into two
equal halves, each serving as training data once, and the re-
minder serving as test data. The generalization error is then
the average of the prediction errors from each fold. In Ta-
ble 1, the generalization errors (with standard deviations) for
the five subjects are presented. It can be seen that the circu-
lar Laplacian scheme always achieves smaller errors than the
other two. Most notably, for subject 4, it decreases the error
by as much as 5%. Although the performance of the circular
Laplacian and the discrete Laplacian is very close for some
subjects (e.g. subject 1 and 2), our statistical tests (Student’s
t-tests with a 0.05 significance level) suggest that the circular
Laplacian is always significantly better for all five subjects
(the p-values are listed in the column of Table 1).

4.4. Discussion

The circular Laplacian is an approximation of the Laplacian
of a Gaussian (LoG) operator, i.e. ∆( 1

σ
√

2π
exp(−x2+y2

2σ2 )).
The circle is equivalent to the ring of positive peaks of LoG,
while its center corresponds to the dominant negative peak of
LoG. As the σ in LoG varies, different spatial filtering effects
can be achieved. The circular Laplacian approximates this
by varying the radius of the circle. Since direct convolution
of LoG with U(e) is hard to derive, we employ the circular
Laplacian as an efficient substitute.

The results for the circular Laplacian (in Table 1) are ob-
tained with subject-specific radii. The best radii (measured as
the angle φ) are 26, 23, 27, 22 and 26 degrees for the five sub-

Table 1. Generalization errors (%) of the three Laplacian
schemes for five subjects (Sb).

Sb Circular Analytical Discrete p

1 21.74±3.23 31.26±3.90 22.78±3.60 3.21e-2

2 3.51±1.30 5.79±1.86 4.29±1.29 3.16e-5

3 29.40±3.22 34.62±3.36 32.09±3.85 2.39e-7

4 17.78±3.46 26.58±4.25 22.86±4.03 4.74e-18

5 5.51±1.54 7.66±1.88 6.79±2.15 2.67e-6

jects respectively (determined by the cross validation). This
suggests that the most discriminative spatial frequencies are
different across subjects. Varying the radius of the circle picks
up these optimal signals.

5. CONCLUSION

In this study, we derive an efficient circular Laplacian scheme
to re-reference EEG potentials. Varying the radius of the ref-
erence circles allows one to select the best filter from a set of
filters. The chosen filter picks up subject specific neural sig-
nals, which improves the separability of EEG signals during
motor imageries in a BCI setting.
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