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ABSTRACT 

The 3
rd

 heart sound (S3) is normally heard during 

auscultation of younger individuals, but it is also common in 

many patients with heart failure. Compared to the 1
st
 and 2

nd
 

heart sounds, S3 has low amplitude and low frequency 

content, making it hard to detect (both manually for the 

physician and automatically by a detection algorithm). We 

present an algorithm based on a recurrence time statistic 

which is sensitive to changes in a reconstructed state space, 

particularly for detection of transitions with very low energy. 

Heart sound signals from ten children were used in this 

study. Most S3 occurrences were detected (98 %), but the 

amount of false extra detections was rather high (7% of the 

heart cycles). In conclusion, the method seems capable of 

detecting S3 with high accuracy and robustness.  

1. INTRODUCTION 

 

Bioacoustic signals originate from mechanical processes 

in the body, and the heart sounds can be seen as fingerprints 

reflecting myocardial function. The 3
rd

 heart sound (S3) is 

produced by rapid deceleration of the early transmitral flow 

and the associated vibration of the entire cardiac-blood pool 

(cardiohemic) system. The more rapid the deceleration of 

early transmitral flow, the more likely a 3
rd

 heart sound will 

be present [1]. S3 occurs normally in children but disappear 

with increasing age. The sound can reappear in elderly 

persons and is clinically important because of its established 

connection with heart failure [2-4]. The sound is 

characterized by its low amplitude, short duration and low 

frequency, making it difficult to hear with a stethoscope (see 

Table I). The amplitude becomes stronger when the mass of 

the ventricular wall increases and when the stiffness of the 

wall decreases. The higher the velocity of the inflow to the 

ventricle will be, the higher the amplitude becomes [1]. An 

example of S3 is shown in Fig 1. 

Using signal processing to clarify, visualize or classify 

heart sounds and murmurs have been a research topic for a 

long time [5], but automatic detection of S3 is still a new 

field of research. However, our group has previously 

developed a method based on a matched wavelet approach 

[2, 3]. 

TABLE I 

FEATURES OF THE THIRD HEART SOUND
a 

Frequency content: 15 – 70 Hz. 

Timing: 0.12 – 0.18 s after closure of the 

semilunar valves or 0.45 ± 0.01 s after 

the R-peak in the ECG. 

Duration: 0.06 ± 0.01 s. 
aReprint from [6]. 

 

The aim of this study was to evaluate a new method for 

S3 detection. Based on recent developments in the detection 

of weak transient signals, we track changes in the recurrence 

time statistics of the sound signal. If a change is detected in 

the time window where S3 is expected (0.12 – 0.18 s after 

closure of the semilunar valves or 0.45 ± 0.01 s after the R-

peak in the ECG), it is interpreted as an S3 occurrence.  

 

S1

S2

S3

 
Fig. 1.  Example of a heart sound signal where 1st, 2nd and 3rd heart sounds 

are marked.

 

 

2. PATIENTS AND DATA COLLECTION 

 

Signals were recorded from ten healthy children (5 male, 5 

female, mean age 10.5 years). The sounds were recorded by 

a contact accelerometer (Siemens, EMT 25C, Sweden) 

connected to a microphone amplifier (Siemens, E285E, 

Sweden). A standard 3-lead ECG was also recorded as a 

time reference (S&W, Diascope DS 521, Denmark). Both 

signals were digitized at 2.5 kHz with 12-bits per sample 

(National Instruments, DAQCard-700), after passing an anti-

aliasing filter with a cut-off frequency of 1.25 kHz. 

Acquisition and processing of data were conducted in 

Labview (National Instruments, USA) and Matlab (The 

MathWorks, USA), respectively.  
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The signals were recorded in a soundproof room and the 

recording site was over the apex, the sensor was fixed with a 

belt around the body. 30 seconds of data was acquired 

during breath hold, and the presence of 3
rd

 heart sounds was 

determined by visual inspection of the recordings (an S3 

occurrence was marked if a signal component with low 

frequency was present in a time window 0.12 – 0.20 s after 

the 2
nd

 heart sound). 

 

 

3. METHODOLOGY 

 

The dynamics of a time discrete system is determined by its 

possible states in a multivariate vector space (called state 

space or phase space). The transitions between the states are 

described by vectors, and these vectors form a trajectory 

describing the time evolution of the system. An observed 

signal S is a projection from this multivariate state space 

onto a one-dimensional time-series. S can be considered as a 

set of n scalar measurements, 

 

{ }nsssS ,...,, 21=   (1) 

 

from which a sequence of N d-dimensional vectors ak can be 

constructed using Takens’ delay embedding theorem  

 

{ } Nkssssa dkkkkk ,...,2,1,...,, )1(2 == −+++ τττ   (2) 

 

where �  is a delay parameter and d is the embedding 

dimension [7]. The purpose of the embedding is to unfold 

the projection back into a reconstructed state space that is 

dynamically and topologically equivalent to the state space 

that generated the process S [8].  

Takens’ theorem assumes that S is infinitely long and 

noise free. These conditions are seldom met, and the 

selection of �  and d affects how accurately the embedding 

reconstructs the system’s state space. When dealing with 

finite time series, the choice of embedding dimension is not 

too crucial if d is sufficiently large. A more important 

consideration is the window length needed to reconstruct 

each vector ak, w = � � d. Typically, univariate time series 

exhibit some sort of periodicity and w should be chosen to 

span several of these oscillations. In this study, �  and d were 

chosen based on the standard techniques of average mutual 

information and false nearest neighbors [7]. An average 

value of d was used for the whole study, while �  was 

calculated adaptively by automatic detection of the first 

minimum of the average mutual information.  

 

3.2. Recurrence time statistics 

Nonlinear dynamical systems theory has successfully been 

used to detect weak transient signals in noisy and 

nonstationary environments. Most of these methods are 

based on various measures of nearest neighbors in state 

space (neighbors indicate recurrence of states in state space). 

It has been shown that nearest neighbors in state space can 

be divided into true recurrence points and sojourn points [9], 

and in [10] two recurrence time statistics were introduced 

based on these two kind of recurrence points. An arbitrary 

state, aref, is chosen somewhere on the trajectory whereupon 

all neighboring states within a hypersphere of radius r are 

selected, see Fig. 2. 

 

( ) { }raaaaB refrefr ≤−= :   (3) 

 

The recurrence points of the first kind (T1) are defined as 

all the points within the hypersphere (i.e. the entire set Br). 

Since the trajectory stays within the neighborhood for a 

while (thus generating a whole sequence of points), T1 

doesn’t really reflect the recurrence of states. Therefore, the 

recurrence points of the second kind (T2), is defined as the 

first states entering the neighborhood in each sequence 

(these points are commonly called true recurrence points). 

T2 is hence the set of points constituted by Br(aref) excluding 

the sojourn points, see Fig. 2. Both T1 and T2 are related to 

the information dimension via a power law, motivating their 

ability to detect weak signal transitions based on amplitude, 

period, dimension and complexity [10]. Specifically, T2 is 

able to detect very weak transitions with high accuracy, both 

in clean and noisy environments while T1 has the 

distinguished merit of being more robust to the noise level 

and not sensitive to the choice of r. A mathematically more 

rigorous definition of T1 and T2 can be found in [10]. 

A sliding window was used to partition the recorded 

signal into overlapping segments (and hence obtaining time 

resolution), where T1 and T2 are calculated for each 

segment.

r

aref

 
 

Fig. 2.  Recurrence points of the second kind (solid circles) and the sojourn 

points (open circles) in Br(aref). Recurrence points of the first kind 

comprise all circles in the set.

 

 

4. DETECTION OF S3 

 

The complete data set consisted of 816 1
st
 and 2

nd
 heart 

sounds (408 heart cycles). The embedding dimension for 

state space reconstruction was found to be d = 6.6 ± 1.1, and 

d = 7 was used throughout the study. The delay parameter 
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was allowed to vary since �  fluctuated heavily between 5 and 

22. This calculation was done adaptively by automatic 

detection of the first minimum of the average mutual 

information. 

In the calculation of recurrence time statistics, the r-value 

is an important parameter. If r is chosen too low, the 

hypersphere would be low on data and if r is chosen too 

high, the hypersphere will contain misleading information 

from erroneous parts of the reconstructed state space. T1 

was calculated for a certain r-value, while T2 was calculated 

for a whole range of values.  

The timing of the 1
st
 and 2

nd
 heart sounds were obtained 

by thresholding T1. In Fig. 3b, an example of T1 is shown 

for a whole range of r-values. T1 for a particular r-value (r = 

0.4) is shown in Fig. 3c after normalization to unity. This 

latter curve was simply thresholded at 0.5 to obtain the 1
st
 

and 2
nd

 heart sound occurrences. Our results were compared 

to an ECG to verify the detections. With r = 0.4, a detection 

accuracy of 99.5% was achieved, see Table II. 

Due to its ability to detect very weak signals, T2 was 

used to find S3. T2 was calculated for r = [0.001 1], which 

resulted in a 2D image (Fig. 3d). This was converted to 1D 

by an edge detection algorithm and normalized to unity (Fig. 

3e). The edge detection was implemented by simple lowpass 

filtering and detection of the maximum value in each 

column. In the 1D signal, occurrences of S3 were found by 

looking for a maximum within a time window defined as 

0.10 − 0.30 s after the 1
st
 and 2

nd
 heart sound, respectively. 

If the amplitude of the maximum was one third higher than 

the base line level (calculated as the mean amplitude in the 

time window 0.30 − 0.70 s after the 1
st
 and 2

nd
 heart sound), 

the algorithm marked the peak as an S3 occurrence. To 

avoid the problems involved in discriminating between the 

1
st
 and 2

nd
 heart sound, we searched for S3 within the 

predetermined time window following both of them. 97.9 % 

of the S3 occurrences were accurately detected, but the 

amount of false extra detections was rather high, see Table 

II. 

 

TABLE II 

RESULTS FROM THE AUTOMATIC DETECTION METHODS 

No. of heart cycles: 408 

False positive heart sounds: 2 

False negative heart sounds: 0 

No. of S3: 390 

No. of detected S3: 382 

No. of false detected S3: 29 

No. of missed S3: 8 

 

To accurately distinguish S3 from the other heart sounds 

may be a problem for the detection algorithm. However, S3 

appears in a well defined time period within the heart cycle. 

This makes it possible to reject most of the false 

components, which appear in the part of the heart cycle 

where S3 is not expected. One limitation which contributes 

to false detection is that our algorithm doesn’t distinguish 

between the 1
st
 and 2

nd
 heart sounds. Search for S3 is 

therefore performed after both the 1
st
 and 2

nd
 heart sounds. 

This limitation could be avoided by inclusion of an ECG 

signal, making it easy to differentiate between the 1
st
 and 2

nd 

sound. 
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Fig. 3.  Example of heart sound signal where the 1st, 2nd and 3rd heart 

sounds are marked as S1, S2 and S3 (a). T1, calculated for a range of r-

values, is shown in (b) while a single T1 is shown in (c) for r = 0.4. T1(0.4) 

is used to find the 1st and 2nd heart sound. T2, calculated for a whole range 

of r-values is shown in (d). An edge detection algorithm is used to convert 

T2 to the 1D signal in (e) which is used to detect S3 (marked as arrows by 

the detection algorithm).
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Comparing the results from this method with the tailored 

wavelet approach in [2, 3] shows some important 

differences. This method gives a higher detection rate (98 % 

compared to 93 %), at the expense of a higher amount of 

false detections (7 % compared to 2 %). A combination of 

the two methods, where this approach finds S3 and the 

wavelet approach excludes false detections, could be 

beneficial. This is however left for future studies. 

There might be complications with the method for 

patients with arrhythmia, e.g. with extra systoles. However, 

we did not notice any detection problems for normal heart 

rate variations. Investigation of pathophysiological 

phonocardiograms is left for future studies. 

 

 

5. CONCLUSION 

 

A novel method for detection of 3
rd

 heart sounds has been 

developed. The algorithm exploits differences in a 

reconstructed state space to detect signal transitions with 

very low energy. A recurrence time statistic is used as a 

measure to quantify the changes. The method is capable of 

detecting S3 with high accuracy and robustness. Compared 

to previous methods, the detection rate is better. However, 

the amount of false detections is also a bit higher. 
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