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ABSTRACT
The process of DNA sequencing-by-synthesis and its non-
idealities are modeled as a noisy switched linear system
parameterized by the unknown DNA sequence. The base-
calling problem is then formulated as a parameter detection
problem. As this system can have long memory, performing
exact maximum-likelihood decoding is computationally pro-
hibitive. An approximate ML method applied to experimen-
tal Pyrosequencing data demonstrates reliable read lengths
exceeding 200 bases, which is significantly longer than that
achieved by current methods.

I. INTRODUCTION

Sequencing-by-synthesis methods perform DNA sequenc-
ing by building up the complement of a single-stranded
template DNA base-by-base. Thus this process converts a
single-stranded molecule into its double-stranded counter-
part. A prime example of such methods is Pyrosequenc-
ing [1], which offers the promise of high throughput and
low cost sequencing via efficient mass parallelization and
relative simplicity. However, DNA read lengths obtained
using commercial Pyrosequencing machines remain below
30-40 bases, which are too short for such applications as
whole genome de novo sequencing via shot-gun assembly.
Moreover, in contrast to the tremendous and very fruitful
efforts devoted to developing sophisticated base-calling tech-
niques for Sanger sequencing, e.g., [2], there has been little
such work to date for sequencing-by-synthesis.

In this paper we model the sequencing-by-synthesis
process and its non-idealities as a noisy switched linear
system parameterized by the unknown DNA sequence, where
the switching is performed by the input test sequence. The
base-calling problem is then formulated as a parameter de-
tection problem: Given a test sequence and its corresponding
noisy output sequence, determine the system parameters,
i.e., the DNA sequence that minimizes the probability of
decoding error. As this system can have long memory,
performing exact maximum-likelihood (ML) decoding is
computationally prohibitive. Applying existing approximate
ML (AML) methods to experimental Pyrosequencing data,
we demonstrate close to an order of magnitude increase in
read length. We also provide bounds on the probability of
correct decoding.

In the next section we describe the Pyrosequencing
process and its non-idealities. In Section III, we develop the
model specifically for Pyrosequenicng, though it should ap-
ply to other sequencing-by-synthesis methods. In Section IV,

Fig. 1. DNA template undergoing Pyrosequencing reaction. Using
testing order A, C, G, T, we obtain a signal proportional to 1A-
0C-1G-2T (shown in inset box), and infer that the first four bases
of the template sequence are AGTT.

we briefly describe the AML method used. In Section V, we
provide experimental results.

II. PYROSEQUENCING

In Pyrosequencing, a DNA template is sequenced by
repeatedly cycling through the tests for the 4 base types, A,
C, G, and T. When a test is successful, the base that is added
as part of the test procedure is incorporated at the current
position on the DNA template, producing a light signal
proportional to the length of the homopolymeric region, i.e.,
stretch of identical bases. Figure 1 illustrates this process for
the DNA template AGTTCAG.

The above description details the ideal outcome of the
Pyrosequencing chemistry, whereby the length of the DNA
template to be sequenced can be arbitrarily long. In practice,
there are several non-idealities that limit realizable read
lengths [3], including:
Incomplete Incorporation: To obtain high enough signal lev-
els, multiple copies of the template must be simultaneously
sequenced. Since the incorporation reaction is stochastic in
nature, incomplete incorporation occurs, i.e., some copies
do not incorporate the added base when they should. This
leads to desynchrony in the read position of different strands.
Analogously we can view the process of sequencing multiple
copies of the DNA template as reading multiple identical
tapes using tape heads with slightly varying read rates and
observing only the sum of their signals.
Misincorporation: Misincorporation occurs when in some
strands the wrong base incorporates. This again leads to de-
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Fig. 2. Directed acyclic graph showing the evolution of the DNA
template TAG subgroups in response to the tests. The corresponding
fraction of the initial strand population at each node is highlighted
in the table and are denoted as subgroup weights.

synchrony in the read position. This phenomenon, however,
is less likely to occur than incomplete incorporation.
Read noise: Read noise occurs as a result of the thermal
and shot noise of the imaging system as well as test-to-test
variations in the reagent handling and delivery apparatus.

III. PYROSEQUENCING MODEL

For clarity of presentation, we first develop the model
assuming only incomplete incorporation. We then show how
read noise and misincorporation can be included. We ignore
the stochastic nature of the incorporation rate, and only
consider its mean value p ∈ (0, 1), which we define as
the average fraction of template strands that incorporate the
added base, when incorporation should ideally occur.

Incomplete incorporation gives rise to a population of
template strands with subgroups classified by a represen-
tative lag from the ideal subgroup. The process of subgroup
formation and evolution can be represented by a weighted
directed acyclic graph as illustrated in Figure 2. The nodes,
which represent the subgroups, are organized in levels each
corresponding to a given test. When incorporation occurs,
a fraction p of the strands in a subgroup advance to the
succeeding subgroup, while a fraction 1− p remains. When
no incorporation occurs, the subgroup position remains un-
changed, i.e., does not advance to the right, and a weight
of 1 is assigned to the corresponding edge. From Figure 2,
it is clear that the initial population of template strands
becomes distributed over many different subgroups, with
laggard subgroups contributing to the overall signal at each
test thereby distorting signal quality at longer reads.

Before describing our model, we introduce some needed
definitions. Consider a DNA strand with M homopolymeric

regions. Since each region can assume one of four possible
base types, we represent it by a a 4-tuple sn whose entries
correspond to the number of A, C, G, and T bases in the
region, respectively. Thus each vector has a single nonzero
integer valued entry. Denote by S, the 4 × (M + 1) DNA
sequence matrix whose first M columns are the sn vectors
and the last column sM+1 = 0. For example, for the
oligonucleotide TAGCGG,

S =

⎡
⎢⎢⎣

0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 2 0
1 0 0 0 0 0

⎤
⎥⎥⎦ .

Recall that each test aims at detecting the presence of
a specific base at the current position in the template.
Accordingly, we represent each test by a binary 4-tuple tn,
1 ≤ n ≤ N , whose entries correspond to the type of test
performed. So, for example, [1 0 0 0]T corresponds to a test
for base A, [0 1 0 0]T corresponds to C, etc. Denote by T ,
the 4×N DNA test sequence matrix whose columns are the
tn vectors.

Finally, for each test 1 ≤ n ≤ N , we define the column
weight vector wn of length M +1 to consist of the fractions
of the total template population in each possible subgroup
after the nth test, beginning with w0 = [1 0 0 · · · 0]T . Thus,
by definition, for each n, wn,i ≥ 0, for all i, and

∑
i wn,i =

1. For the example DNA template sequence in Figure 2,
the weight vectors are the rows of subgroup weights, i.e.,
w1 = [1 − p p 0 0]T ,. . . , w4 = [1 − p p(1 − p) p2 0]T .

From the above discussion, it follows that the ith compo-
nent of the weight vector at time n can be expressed as

wn,i = ai−1,n wn−1,i−1 + (1 − ai,n) wn−1,i,

where ai,j = p I((ST tj)i), (ST tj)i refers to the ith element
in the vector ST tj , and I(a) = 1 if a > 0 and zero,
otherwise. Thus, the evolution of the weight vector can be
described by the switched linear relation

wn = Atnwn−1, for 1 ≤ n ≤ N, (1)

where the state-transition matrix

Atn
=

⎡
⎢⎢⎢⎢⎢⎣

1 − a1,n 0 . . . 0
a1,n 1 − a2,n . . . 0
0 a2,n . . . 0
...

...
. . .

...
0 0 . . . 1 − aM+1,n

⎤
⎥⎥⎥⎥⎥⎦

.

Hence, each test vector tn selects (or switches to) the
appropriate state-transition matrix Atn

for the current test.
Define the noiseless output xn to be the sum of the

contributions from each subgroup of the template population
that “tests positive” in response to test tn, i.e.,

xn = p [Swn−1]T tn. (2)
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Fig. 3. Block diagram of the noisy switched linear model for
Pyrosequencing or, more generally, sequencing-by-synthesis.

Each term in the inner product of ST tn and wn−1 represents
a contribution from a subgroup.

To include read noise, we assume it is additive White
Gaussian Noise (WGN) that is independent of the signal
and system parameters. With noise added, the output of the
system is given by

yn = xn + vn, for 1 ≤ n ≤ N,

where vn, 1 ≤ n ≤ N are independent, identically distrib-
uted N (0, σ2) random variables. Figure 3 shows the overall
system model, where the input tn dictates the evolution of
the system with parameters S and p.

Misincorporation, if non-negligibly present, can be mod-
eled by introducing a misincorporation rate, 0 ≤ ε ≤ 1
akin to the incorporation rate, p. Depending on the outcome
of each test, subgroups either advance to the succeeding
subgroup with weight p upon success or with weight ε
upon failure. Since ε is typically small (< .02), as a good
approximation and to simplify the analysis, we only consider
one subgroup advancement per test.

Explicitly, to include the effect of misincorporation, we
replace ai,j in the definition of Atn

by ãi,j = Ip((ST tj)i),
where Ip(s) = p if s > 0 and ε, otherwise.

IV. APPROXIMATE ML BASE-CALLING

From the results of the previous section, it is clear that
given a DNA sequence matrix S, a test matrix, and p, we can
solve for the expected value of the output signal E(yn) =
xn, at each time n. However, it is the reverse procedure, i.e.,
base-calling, that is of practical interest to genomics: Given
T , p, and y1, y2, . . . , yN , estimate the sequence matrix S?
Casting this problem as a parameter detection problem we
can use maximum-likelihood detection (MLD) to obtain

S∗ = argmax
S

f(y1, . . . , yN |S, T, p)

= argmin
S

N∑
n=1

(yn − p [Swn−1]T tn)2.

Thus, we only need to minimize the l2 distance between the
observed sequence and the chosen sequence over the search
space of all possible DNA sequences. The computational
complexity of this approach is daunting, since even if we
limit the length of homopolymeric region to no more than K
bases, we must search through 4

3 (3K)M possible sequences.

Fig. 4. Evolution of the pulse response for p = 0.95 and ε = 0.
Initially, (a) ISI is negligible for the first base, but becomes more
severe after (b) 50 tests and (c) 100 tests.

Clearly, we need to take better advantage of the problem
structure to reduce the computational complexity.

Communication Channel Analogy: To gain better under-
standing of the special structure of the model, we view each
homopolymeric region as producing a particular “channel”
pulse in response to a given set of tests over time. Accord-
ingly, we decompose each xn into the sum of the shifted
pulse responses due to each individual homopolymeric re-
gion as

[x1 x2 · · · xN ]T = HT · [111 · · · 111]T ,

where

HT = p ·

⎡
⎢⎢⎢⎣

b1,1 0 · · · 0
b2,1 b2,2 · · · 0
...

... · · · ...
bN,1 bN,2 · · · bN,M

⎤
⎥⎥⎥⎦ ,

and
bi,j = wi−1,j(ST ti)j .

Each column of HT represents the contribution from
an individual homopolymeric region to the resultant
x1, x2, . . . , xN . Figure 4 plots the pulse response as a
function of the number of tests. Note that as long as p <
1, each homopolymeric region contributes to succeeding
outputs even for very large N , although possibly negligibly,
or in communication theory parlance, the channel exhibits
severe intersymbol-interference (ISI).

Iterative Partial-MLSD: The above discussion suggests
two special features of the model that can be exploited to
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Fig. 5. Plot of MLSD Pc estimate versus partial-MLSD Monte
Carlo simulation and lower bound for symbol-by-symbol detection
for p = 0.95 and ε = 0.

reduce the computational complexity of base-calling. The
first is that only a limited portion of the pulse response is
significant. The second, and perhaps more important, is that
tests of different base types are reasonably uncorrelated for
p close to one. Taking these properties into consideration,
we appropriately modify the soft-input Viterbi algorithm
(VA) [4] to perform base-calling and, hence, approximate
ML sequence detection (MLSD). We use 4 trellises (each one
with states corresponding to only one test type) and perform
symbol-by-symbol detection to obtain a rough estimate of
the sequence to initialize the algorithm. We then perform
the standard VA on each of the four trellises, with the best
surviving paths from the other three trellises filling in the
gaps. We extend the paths one path length at a time and
iterate through the trellises based on the order specified by
the test matrix T . In this manner, we approximate MLSD
using an iterative, partial-MLSD approach. Note that to
generate a confidence score for each base, as is commonly
done in Sanger sequencing [2], a soft-output VA (SOVA) [5]
or List VA (LVA) [6] can be used.

The above communication analogy can also be exploited
to derive bounds and estimates on the probability of correct
decoding (Pc). Figure 5 compares the lower bound on Pc

obtained assuming symbol-by-symbol (SBS) detection (i.e.,
with no lookahead) and a conservative estimate assuming
MLSD with worst case ISI to Pc obtained using a Monte-
Carlo simulation of the partial-MLSD algorithm. As can be
seen, the performance of the partial-MLSD algorithm is on
par with the MLSD estimate.

V. EXPERIMENTAL RESULTS

Before applying the iterative partial-MLSD algorithm
to experimental Pyrosequencing data, several preprocessing
steps are needed. A baseline correction must be performed
due to the changing chemical background signal present as
well as integration of the total photoemission from each
test. Normalization of integrated signals also needs to be

Fig. 6. Plot of predicted vs. experimental data (for p = 0.995 and
ε = 0.018).

performed to account for chemical variations from run to run.
The scaling factor required for such normalization is auto-
matically extracted from the histogram of the photoemission
values. Additionally, we need to estimate the parameters of
our model, e.g., p, base specific gains, etc. These parameters
are similarly extracted from a subset of the data itself through
an iterative fitting procedure.

We applied the iterative partial-MLSD algorithm to 5 Py-
rosequencing datasets ranging in length between 55 and 224
bases, correctly decoding the first 170 out of 208 and 205 out
of 224 bases of the longest two templates as well as correctly
decoding all shorter sequences. Figure 6 highlights the model
fit for the dataset of the longest template. This demonstrates a
clear improvement over the 30-40 base read lengths reliably
sequenced by commercially available Pyrosequencing ma-
chines. This suggests using existing Pyrosequencing systems
in conjunction with our proposed base-calling algorithm, that
read lengths well over 200-300 bases are attainable.
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