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ABSTRACT

DSP based techniques have been recently proposed to
identify the protein coding regions in a DNA strand by
detecting the so-called period-3 component in the DNA
spectrum. The DNA spectrum is computed after map-
ping the DNA symbolic sequence to numerical digital se-
quences. A typical choice of mapping is the Voss Repre-
sentation. In this paper, we propose the use of a more
elaborate mapping scheme, namely the Z-curve represen-
tation. Using a multirate signal processing approach, we
derive closed form expressions to compute the Z-curve
based DNA spectrum as well as mathematical conditions
that characterize the coding regions. The derived formu-
las also prove that the Z-curve representation yields essen-
tially the same DNA spectrum as the one obtained using
the Voss representation at a lower computational cost.

1. INTRODUCTION

A single DNA strand is represented as a sequence of letters
that belong to the alphabet F = {A, C, G, T} denoting
the four nucleotides (bases) in the DNA, Adenine, Cyto-
sine, Guanine, and Thymine. Only segments of the DNA
molecule contain relevant information for protein synthe-
sis, namely the genes or the protein coding regions. A ma-
jor goal of genomic research is to understand the nature of
this information and its role in determining the particular
gene function. This, in turn, requires the identification of
the genes in a DNA sequence. By mapping the symbolic
DNA sequence to a set of digital signals, Signal Processing
techniques can be applied to identify these protein coding
regions [1]. All of these approaches rely on detecting the
existence of short range correlations in the nucleotide ar-
rangement known as the “1/3 periodicity” or the “period-
3” component in the DNA spectrum [1, 2, 3]. A number
of researchers have indeed reported that the base sequence
in the coding regions (exons in Eucaryotes) have a strong
period-3 component [1, 2] while on the other hand no
such peaks exist in non-coding regions (introns in Eucary-
otes) [3, 4]. Given the period-3 behavior, it was concluded
that the relative-height of the peak at f = 1/3 in the DNA
spectrum is a good discriminator of coding potential and
can therefore be used to distinguish between coding and
non-coding regions. Although the period-3 has shown its
merit in gene prediction for a number of genomes [1-4], a
pending question is whether the period-3 behavior of the
DNA spectrum is not the result of the specific mapping
scheme, i.e., an artifact of the Voss representation itself
rather than a biologically induced feature.

To address this question, we consider a more sophisticated
mapping known as the Z-curve representation [5, 6].
Using this specific map and by invoking multirate DSP
principles, we derive closed form expressions for the DNA
spectrum. The derived mathematical expressions are very
simple to implement and generate a set of mathemati-
cal conditions that separate the coding regions from the
non-coding ones. We also prove that the DNA spectrum
based on the Z-curve mapping is equivalent to the one ob-
tained using the Voss representation. This suggests that
the period-3 behavior is independent from the underlying
mapping scheme. Finally, we show that the computational
cost of the DNA spectrum using the Z-curve mapping is
much lower than in the Voss representation case. The
above results imply in particular that it is always more
beneficial to work with the Z-curve map rather than the
Voss representation when computing the DNA spectrum.

2. THE Z-CURVE MAP

To generate the Z-curve sequences, we first map a single
DNA strand into four binary indicator sequences x�(n),
∀ � ∈ {A, C, G, T} where 1 indicates the presence of a
base and 0 indicates its absence. For example, the map-
ping of the single DNA strand

5’ ... A T G G T C T A A ... 3’
to the binary indicator sequence xA(n) is given by

xA(n) = (..., 1, 0, 0, 0, 0, 0, 0, 1, 1, ...)
This simple and most popular mapping of a DNA sequence
is known as the Voss representation [7]. From a biolog-
ical perspective, the Voss representation characterizes the
frequency of occurrence of each individual base � in the
DNA sequence. The sums of the samples for every x�(n)
(as a function of n) are then computed to obtain

�(n) =
n∑

i=0

x�(i), ∀ � ∈ F (1)

The four cumulative sequences A(n), C(n), G(n), and
T (n) are in turn used to form the Z-curve sequences x(n),
y(n), and z(n) as follows [6]

x(n) = 2[A(n) − A(n − 1) + G(n) − G(n − 1)] − 1

y(n) = 2[A(n) − A(n − 1) + C(n) − C(n − 1)] − 1

z(n) = 2[A(n) − A(n − 1) + T (n) − T (n − 1)] − 1

for n = 0, . . . , N − 1 and A(0) = G(0) = C(0) = T (0) =
0. The above equations are however not suitable for our
analysis and alternative expressions for x(n), y(n), and
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z(n) in terms of the Voss sequences are required. To derive
these, recall that A(n) is the summation of xA(n) from 0
to n and hence A(n−1) is the summation of xA(n) from 0
to n−1. Then the cumulative difference A(n)−A(n−1) is
1 if the nth base of the sequence is an A and is 0 otherwise.
It follows that

A(n) − A(n − 1) = xA(n) (2)

Similar forms exist for C, G, and T . From equation (2),
we can express x(n), y(n), and z(n) as an affine trans-
formation of the Voss sequences

⎡
⎣

x(n)
y(n)
z(n)

⎤
⎦ = 2

⎡
⎣

1 0 1 0
1 1 0 0
1 0 0 1

⎤
⎦

⎡
⎢⎣

xA(n)
xC(n)
xG(n)
xT (n)

⎤
⎥⎦ −

⎡
⎣

1
1
1

⎤
⎦

(3)
We note that x(n), y(n), and z(n) can only take the
values of 1 or −1. For example, x(n) has the value 1
iff the nth sample of the sequence is either A or G and
has the value −1 iff the nth sample is either C or T .
One advantage of the Z-curve map that has partly moti-
vated this study is that each of the three Z-curve gen-
erated digital sequences has a biological interpretation.
The first sequence x(n) indicates the existence of either
A or G which represents a differentiation between the
purines/pyrimidines (R/Y) bases along the DNA strand.
Similarly, the second sequence y(n) represents the dis-
tribution of the amino/keto (M/K) types bases along
the DNA sequence while the third sequence z(n) repre-
sents the distribution of the strong/weak hydrogen bonds
(S/W) [5]. A second advantage of the Z-curve map is
that x(n), y(n), and z(n) are independent unlike the Voss
representation where the four elementary sequences form
a linearly dependent set since they add up to a sequence
of ones. The removal of redundancy decreases the compu-
tational cost of the DNA spectrum as we show later.

3. THE VOSS DNA SPECTRUM

Assume that a DNA sequence x(n) is of length N . The
sliding window M -point DFT of x(n) is defined by

X(m, k) �
M−1∑
n=0

x(n + m)e−j2πnk/M (4)

The starting point of the window is m = 0, P , . . . , (N −
1)/P (we zero-pad x(n) if (N − 1)/P �= integer) where
P is the amount of window shift. If P = 1, then, the
window slides one nucleotide at a time whereas if P = 3,
the displacement of the window is on a codon basis (a
codon is a triplet of nucleotides). To capture the period-
3 component in x(n), we let M = 3L for some positive
integer L and fix the frequency k to L = M/3. Equation
(4) then becomes

X(m) � X(m, L) =

M−1∑
n=0

x(n + m)e−j2πn/3 (5)

The polyphase representation for P = 3. Using the
notation x(m + n) ≡ xm(n), we rewrite X(m) as follows

X(m) =
2∑

r=0

� N−1
3 �∑

n=r,r+3,...

xm(3n + r)e−j2πr/3

�
2∑

r=0

Xmr e−j2πr/3 (6)

The signals xm(3n + r), r ∈ {0, 1, 2}, are termed re-
spectively the first, second and third polyphase com-
ponents of xm(n) [8] and can be generated by passing
the signal xm(n) through the multirate blocking structure
of Fig. 1. From Fig. 1 and to compute X(m), we first
generate the three polyphase components by shifting and
downsampling with decimation ratio 3, sum their respec-
tive samples using the real FIR filter H(z) (rectangular
window), multiply the sums by the appropriate complex
numbers and, finally add the three resulting quantities.

z

z

xm(n)

3 H(z)

e -j 2π/3

e -j 4π/3

3 H(z)

3 H(z)
Xm0

Xm1

Xm2

X(m)

1

Figure 1: A multirate blocking structure with decimation
ratio 3 and H(z) = 1 + z−1 + z−2 + ... + z−(L−1).

Fig. 2 shows the three polyphase components given by
equation (6) as phasors. It can be seen that if Xm0 =
Xm1 = Xm2 as in Fig. 2(a), then the mthM/3 DFT sam-
ple is zero, implying the existence of a non-coding region
(intron). If this condition is not satisfied as in Fig. 2(b),
a coding region (exon) is expected.

(a)

Xm0

Xm1

Xm2

(b)

Xm0

Xm1

Xm2

−2π/3

−4π/3

Figure 2: Phasor diagram of the polyphase components of
X(m) given by equation (6) (a) in case of equal amplitudes
(b) in case of different amplitudes.

To compute the Voss DNA spectrum Sv(m), we first find
the polyphase components for each of the four Voss DFT
sequences as given by equation (6). It follows that

X�m � X�m0 + X�m1e−j2π/3 + X�m2e−j4π/3 ∀ � ∈ F (7)
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Given that the DNA spectrum is defined as

Sv(m) = |XAm|2 + |XCm|2 + |XGm|2 + |XTm|2

and since |X�m|2=X�mX∗
�m where ∗ denotes complex con-

jugation, we can show using equation (7) that | X�m |2=
1/2

∑2
r=0[X�mr − X�mq ]2. It follows that

Sv(m) = 1/2
∑
�∈F

2∑
r=0

[X�mr − X�mq ]2 (8)

where q = (r + 1) mod 3.
Computation Complexity. For a DNA strand of length
N with the sliding window length M , the window starting
point m ranges from 0 to N−M and hence N−M windows
are to be tested for being a coding/non-coding region. For
each window, 12 ∗ 2 = 24 multiplications are required.
Therefore to test the whole sequence, the computation
complexity is of order � 24 N for relatively long sequences.

4. THE Z-CURVE DNA SPECTRUM

To compute the Z-curve DNA spectrum Sz(m), we pro-
ceed as in section 3 by finding the polyphase representa-
tion of x(n), y(n), and z(n) respectively. For example, for
x(n), we can write

X(m) =

M−1∑
n=0

x(n)e−j2πn/3

= 2

M−1∑
n=0

[xA(n) + xG(n)]e−j2πn/3

−
M−1∑
n=0

e−j2πn/3 (9)

Since M = 3L, the second summation in (9) is equal to 0.
Using the polyphase representation, we find that

X(m) = 2
2∑

r=0

(XAmr + XGmr )e−j2πr/3 (10)

Since |X(m)|2=X(m)X∗(m) where ∗ denotes complex con-
jugation, we get

|X(m)|2 = 2
2∑

r=0

[XAmr + XGmr − XAmq − XGmq ]2

where q = (r + 1) mod 3. Similarly, we compute the
spectral energies |Y (m)|2 and |Z(m)|2 of y(n) and z(n)
respectively. The Z-curve DNA spectrum is then given
by

Sz(m) = 2
∑

�∈F̀

2∑
r=0

[XAmr + X�mr − XAmq − X�mq ]2

where q = (r+1) mod 3 and F̀ is a subset of the nucleotides

field F, that is F̀ = {C, G, T} ⊂ F. Rearranging terms,

Sz(m) = 4Sv(m)

+ 4

2∑
r=0

(XAmr − XAmq )
∑

�

(XAmr − XAmq )

A simplification of the previous equation is obtained by
observing that for r ∈ {0, 1, 2}, the quantity [XAr +
XGr + XCr + XTr ] is equal to the total number of pos-
sible bases in the rth codon position within the window.
Since, in each codon within the window, the rth position
is always occupied by a nucleotide, the above quantity is
a constant and is equal to 1/3 the window length. Using
this conclusion, we can then derive that

Sz(m) = 4Sv(m) (11)

indicating that the Z-curve DNA spectrum is simply a
scaled version of the Voss DNA spectrum.

Conditions for the non-coding regions. We define
the combined binary indicator sequences XA�mr = XAmr

+ X�mr ∀ r ∈ {0, 1, 2}, and ∀ � ∈ F̀. For example,
XAGmr is 1 if the rth codon position of the mth window is
either A or G and is 0 if the base at this position is either
C or T . Using this definition, we can prove that

Sz(m) = 2
∑

�∈F̀

2∑
r=0

(XA�mr − XA�mq )2 (12)

for q = (r + 1) mod 3. Note that, from equation (12),
Sz(m) ≥ 0. Moreover, Sz(m) = 0 if and only if every term
composing Sz(m) is equal to zero. This, in turn, produces
the following conditions for the non-coding regions

⇒ XA�mr

XA�mq

= 1, (13)

∀ r ∈ {0, 1, 2}, q = (r + 1) mod 3

and ∀ � ∈ F̀

Computation Complexity. For a DNA strand of length
n with the sliding window length M , the window starting
point m ranges from 0 to N−M and hence N−M windows
are to be tested for being a coding/non-coding region.
For each window, 9 ∗ 2 = 18 multiplications are required.
Therefore to test the whole sequence, the computation
complexity is of order � 18 N for relatively long sequences.

5. SIMULATION RESULTS

To validate the mathematical derivations in the previous
section, we compare the spectrums obtained from the Z-
curve and Voss representations of the DNA sequence of the
gene F56F11.4 (Genbank accession number AF099922) in
the C-elegans chromosome III. This gene has been used as
a benchmark for different DSP gene detection schemes and
is known to have five distinct exons. Applying the sliding
window DFT method with a window length 351 on this
gene using both representations resulted in the same nor-
malized spectra shown in Fig. 3(a). To locate the protein
coding regions, we use the threshold level T = ms + γ
∗ σs where ms is the mean of the DNA spectrum, σs is
its standard deviation and, γ is an arbitrary real number.
The threshold level T is therefore parameterized by γ. The
value of γ is determined by using a learning paradigm over
known genes and in our case, is found to be 0.6625. With
γ fixed, binary decision plot ST (n) of the DNA spectrum
of the F56F11.4 gene is shown in Fig. 3(b). In order to ver-
ify our results, GenScan and Ensembl have been used to
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predict the exon-intron structure for the F56F11.4 gene.
Their outputs are shown in Fig. 5 and Table. 1 respec-
tively and match perfectly with our results. The above
experiment demonstrates the potential of the method. An
extensive study over a large number of genomes is outside
the scope of this paper.

More on the Z-curve map. Besides its computational
advantage, the Z-curve sequences can in general contribute
towards the finding of important biological features. For
example, for the gene F56F11.4, we found that the cumu-
lative base sequences are dominated by A(n) and T (n) as
shown in Fig. 4. It follows that z(n), which is A and T
dependent, is increasing at a much faster rate than x(n)
and y(n). The DNA spectrum of z(n) only would then
represent the distribution of the bases of the strong/weak
hydrogen bonds along the DNA sequence which can po-
tentially help in locating areas in the sequence of increased
density of cytosine-guanine, also known as CpG islands.
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Figure 3: (a) Normalized DNA Spectrum of the gene
F56F11.4 using the sliding window DFT method for both
the Voss and Z-curve representations (b) The Z-curve
DNA Spectrum of the gene F56F11.4 and the binary de-
cision sequence output with γ = 0.6625.
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Figure 4: The Cumulative Base Sequences for the Gene
F56F11.4 in the C-elegans chromosome III.
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Figure 5: GenScan Coding Regions for F56F11.4

Region Relative Position Exon Length
F56F11.4a.1 929-1135 207
F56F11.4a.2 2528-2857 330
F56F11.4a.3 4114-4377 264
F56F11.4a.4 5465-5644 180
F56F11.4a.5 7255-7605 351

Table 1: Ensembl Coding Regions for F56F11.4

6. CONCLUDING REMARKS

A study of the Z-curve map for the period-3 detection was
presented. In specific, we have derived closed form expres-
sions for the Z-curve based DNA spectrum and math-
ematical conditions that characterize the coding regions
from the non-coding ones. We have also proven that the
Z-curve DNA spectrum is essentially the same as the Voss
based one. Finally, our analysis indicates that the com-
putational cost involved in the evaluation of the Z-curve
spectrum is less than in the Voss case. This is particularly
relevant given that some sequences can be several hundred
thousand base pair long. One interesting related research
question is whether all affine maps of the Voss sequences
generate the same DNA spectrum.
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