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ABSTRACT

This paper proposes a method of normalization of cDNA microarray
data. This approach uses all gene data to estimate the normaliza-
tion parameters and it obtains these parameters using an algorithm
based on Least Absolute Deviation (LAD) regression. This method
normalizes iteratively each microarray set after the estimation of the
normalization parameters which uses a LAD regression algorithm.
The normalization method has a robust performance since it assumes
that the errors between arrays follow a Laplacian distribution, lead-
ing to the mean absolute error minimization as a performance crite-
rion to be achieved. The proposed normalization method was eval-
uated using three performance measures and they show that LAD
based normalization method minimizes the errors and provides a
more consistent replicated data spread with respect to a least square
based method.

1. INTRODUCTION

Microarray technology has become in the standard experiment for
large-scale analysis of cells gene expression. This technology has
emerged as a powerful tool since it can be used to measure the ex-
pression levels for thousands of genes simultaneously from a single
sample. However, the microarray experiments are contaminated by
several sources of measurement errors which affect the quality of re-
sults. The sources of measurement errors are generally assigned to
the amount of samples used in the experiment, the amount of label
applied to the samples, the label emission efficiency and the scan-
ning parameters.

To overcome these drawbacks, the generation of multiple mi-
croarrays from the same tissues has been developed in order to obtain
a more reliable microarray data [1]. However, the same microar-
ray experiment does not generate the same gene expression data.
Indeed, each replicated microarray may have substantial variations
with respect to another microarray. Since the microarrays have sev-
eral experimental limitations which affect the gene expression levels,
the normalization of the replicated microarray data has emerged as
a necessary preprocessing stage before any further gene expression
data analysis.

The goal in a microarray data normalization algorithm is to re-
move or minimize the measurement errors between microarray data
sets. More precisely, all the microarray replicated data are mapped
to a new data set such that a performance criterium that compares
each replicated set and a reference set is achieved. The replicated
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data normalization methods commonly assumes that the gene ex-
pression data sets are related by a scale factor and an offset correc-
tion [2]. This leads naturally to linear regression techniques as the
evident approach to estimate the normalization coefficients. Some
previous normalization methods are based on Least Square (LS) al-
gorithms that normalize the replicated microarray data assuming that
the errors between replicated data sets follow a Gaussian distribu-
tion. However, it has been widely reported that microarray data is
inherently noisy and, therefore, several nonlinear operations have
been recently introduced which try to minimize the effects of out-
liers on the estimation of normalization coefficients [3, 4].

This paper proposes a new method of normalization based on
Least Absolute Deviation (LAD) regression. This method uses all
gene set to compute the normalization parameters under the assump-
tion that the errors between replicated data sets follow a Laplacian
model. The proposed approach normalizes iteratively each microar-
ray set after the estimation of normalization parameters that are found
through the LAD regression iterative algorithm. The performance of
the proposed iterative normalization method is evaluated using three
different performance measures: Mean Square Error (MSE), Mean
Absoloute Error (MAE) and Boxplots. These performance measures
show that LAD based algorithm minimizes the error values and pro-
vides a more consistent replicated data spread respect to a LS based
algorithm [4].

2. PRELIMINARY BACKGROUND

Without lost of generality, let us assume that we have two gene ex-
pression data sets obtained from replicated microarrays. Although,
in general, more than two replicated microarrays are available, the
normalization is performed on pairs of microarray expression data
sets, where one data set is considered as the reference set and the
other is the floating point set that has to be normalized respect to
the reference set. Consider that y = [y1, y2, . . . , yN ] are the ex-
pression levels outputted from the reference set. Furthermore, let
x = [x1, x2 . . . , xN ] be the expression levels of the replicated mi-
croarray to be normalized with respect to the reference set.

It is common to assume that the floating point set is related
to the reference set by scaling and shifting operations [2, 3], i.e,
yi = axi + b + ηi, where a is the scale factor between the data
pairs {xi, yi}|

N
i=1, b is the shift correction and ηi|

N
i=1 are the unob-

servable errors, with N as the number of genes in each microarray.
The goal in a normalization method is to find the best values of a and
b such that a performance criterium that compares the reference set
to the floating point set is achieved. For instance, regression methods
estimate the normalization coefficients assuming that the unobserv-
able errors {ηi}|

N
i=1 obey a specific distribution, thus, a and b are
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found such that they minimize the effects caused by {ηi}|
N
i=1.

A first approach in the estimation of scale and shift parameters
assumes that the unobservable errors ηi follow a zero-mean Gaussian
Distribution. This leads, naturally, to the mean square error (MSE)
between the reference and floating point sets as performance cri-
terion to be minimized. This is achieved by the well-known least
square (LS) regression. A shortcoming of this approach, however, is
that it uses all the genes in the set to estimate a and b, and this may
lead to unacceptable results since not all genes are reliable due to the
presence of outliers.

In view of this limitation, Wang et al. in [4] developed a nor-
malization algorithm that estimates iteratively the normalization co-
efficients (a, b) using a subset of reliable genes. The basic idea is
to select, at each iteration, a subset of reliable genes by defining a
gene selection window over a scatter plot and estimate the normal-
ization coefficients based on this subset of control genes, adding thus
robustness to the normalization approach.

Several drawbacks on this approach can be observed. First, the
minimization of the MSE using only the control genes does not nec-
essarily lead to the minimum MSE over all gene data set. Second,
the choice of a good gene selection window is critical for the con-
vergence and accuracy of the algorithm.

3. NORMALIZATION METHOD BASED ON LEAST
ABSOLUTE DEVIATION REGRESSION

The normalization methods described above are based on the as-
sumption that the unobservable errors follow a Gaussian model. How-
ever, it has been reported that outliers are likely to occur in microar-
ray data [5]. To mitigate the effects of outliers over the estimation
of scale and shift parameters, robust regression methods are needed.
Furthermore, it has been shown in [6] that modelling expression data
using heavier-than-Gaussian tail distributions (such as Laplacian dis-
tribution) leads to more accuracy results in gene classification.

In this paper, we propose a microarray normalization method
which assumes that the unobservable errors follow a Laplacian model,
leading to least absolute deviation (LAD) regression as a optimiza-
tion technique to compute the normalization coefficients, that by
itself, adds robustness, avoiding thus the pre-selection of reliable
genes. Therefore, the natural performance criterion to be minimized
is the mean absolute error (MAE) between the reference set and nor-
malized set. That is,

MAE =
N∑

i=1

|yi − (axi + b)| (1)

where a and b are, as before, the scale and shift coefficients to be
determined.

Unlike LS regression, in LAD regression there are not closed-
form expressions for the computation of a and b, so we have to resort
to an iterative approach to find the values of a and b that minimizes
Eq. (1) [7, 8]. Finding the optimum values for a and b can be thought
of as a two stage-procedure. First, the scale factor a is fixed to an
initial value, say a = a0 and the MAE function becomes a one-
parameter function depending on b:

F (b) =
N∑

i=1

|yi − a0xi − b| (2)

Note that Eq. (2) is the Maximum Likelihood estimator (MLE) of
location for a Laplacian distribution, where yi − a0xi are the obser-
vation samples and b is the location parameter to be determined. The

goal, thus, is to find the location parameter b that minimizes F (b). It
is well-known that F (b) reaches its minimum at the sample median
[9], thus the shift correction b is obtained as:

b = MED
(
yi − a0xi

∣∣∣Ni=1

)
(3)

In the second stage, the shift correction is fixed to the value com-
puted previously and now the MAE becomes a function of the scale
factor a, namely

F (a) =

N∑
i=1

|yi − axi − b0| (4)

after simple algebraic manipulations, (4) becomes

F (a) =
N∑

i=1

|xi|

∣∣∣∣yi − b0

xi

− a

∣∣∣∣ (5)

Upon closer examination of Eq. (5), it can be noticed that the
minimization of F (a) looks like the MLE of location for a Laplacian
distribution, where { yi−b0

xi

} are the observation samples, |xi| are
the sample weights, and a is the location parameter to be estimated.
Thus, the value of a that minimizes Eq. (5) reduces to the weighted
median of the samples { yi−b0

xi

} defined as [9]:

a = MED

(
|xi| �

yi − b0

xi

∣∣∣∣N
i=1

)
(6)

where � is the replication operator defined as k � x =

k times︷ ︸︸ ︷
x, . . . , x .

Thus, the estimation of a reduces to replicating the samples
{ yi−b0

xi

}, |xi| times, sort the replicated samples and select the cen-
ter of the “sorted-replicated” set as the scale coefficient a. Although
it may be seem that the replication operator is restricted to integer
value weights, a more general definition of weighted median using
non-integer weights has been developed in [9] and [10].

Note that Eq. (3) uses a fixed value of a to estimate b. How-
ever, there is not a specific procedure to compute the initial value for
a. An intuitive approach to estimate a is using the LS solution, and
this value is used as initial value for a. After the initial scale coef-
ficient a0 is obtained, the algorithm starts an iterative procedure to
estimate b and a. The main steps of LAD regression are summarized
as follows.

LAD Regression Iterative Algorithm

Step 1) Set k=0, and compute the initial value of the scale factor
a = a0 using the LS solution.

Step 2) Set k=k+1, and estimate bk using the fixed value ak−1 com-
puted at the previous iteration

bk = MED(yi − ak−1xi|
N
i=1). (7)

Step 3) Estimate ak, using the value of bk previously computed in
step 2

ak = MED

(
|xi| �

yi − bk

xi

∣∣∣∣N
i=1

)
(8)

Step 4) Repeat step 2) and step 3) until ak and bk deviate from ak−1

and bk−1 within a tolerance band.

Once defined a procedure to estimate the regression coefficients
based on MAE minimization criterium, we propose a normalization
method of microarray data using the LAD regression iterative algo-
rithm. This normalization algorithm uses all gene expression data to
estimate the normalization coefficients, and avoid that the normal-
ization effectiveness depends on the selection of gene control data.
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3.1. LAD based Normalization Method

The approach to normalize the floating point set with respect to the
reference data uses a double iterative procedure. The first iterative
procedure estimates the normalization coefficients using the LAD
regression iterative algorithm, as described above, and the second
one is the normalization procedure itself.

This normalization algorithm, first selects one of the gene ex-
pression sets as the reference set and the remaining sets are consid-
ered as floating point sets. The normalization method is then applied
to the reference set {yi}|

N
i=1 and each one of the floating point sets

{xi}|
N
i=1, independently.

Initially, the proposed method defines the floating point set as the
normalized set at the iteration j = 0, i.e. x

(j=0)
i = xi, where j is the

iteration index for the normalization loop and x
(j)
i is the normalized

data at the j − th iteration. With the two data sets {yi}|
N
i=1 and

{x
(j−1)
i }|Ni=1, the algorithm computes the best values of a(j) and

b(j) using the LAD regression iterative algorithm; where a(j) and
b(j) are, respectively, the scaling and shifting parameters computed
by the LAD iterative regression algorithm, at the iteration j.

Once obtained the scaling and shifting parameters, the normal-
ization operation is carried out. Thus, the new normalized data set
is:

x
(j+1)
i = a

(j)
x

(j)
i + b

(j) (9)

where x
(j+1)
i is the new normalized data and x

(j)
i is either the nor-

malized data obtained from the previous iteration or the floating
point data for the first iteration. The algorithm back and forth until
a convergence criterium is achieved, otherwise begin the new iter-
ation with {yi}|

N
i=1 and {x

(j)
i }|Ni=1. This normalization method is

summarized as follows:
LAD based Normalization Algorithm

Step 1) Select an expression level data set as reference data set {yi}|
N
i=1

and one of the remaining data sets as the floating point data
set.

Step 2) Start the normalization process using the reference data set
and one floating point data set {x(j=0)

i }|Ni=1, where j=0 in-
dicates that the floating point data set is considered as the
normalized data at iteration j=0.

Step 3) Set j = j + 1, and estimate the normalization coefficients
(a(j), b(j)) using the LAD Regression Iterative Algorithm,
where the reference data is yi, and the floating point data is
the normalized data at the previous iteration x

(j−1)
i .

Step 4) Obtain the new normalized data set using the linear model:

x
(j)
i = a

(j)
x

(j−1)
i + b

(j) (10)

Step 5) End the iteration, once a(j) and b(j) do not diverge from
a(j−1) and b(j−1) within a tolerance band. Otherwise, go
back to step (3).

4. RESULTS AND DISCUSSION

The proposed normalization method was evaluated on public cDNA
microarray data available in [11]. This microarray database is a set of
72 raw data files. The microarray data are obtained from experiments
that measure gene expression in honey bee brains. Each microar-
ray experiment consists of an array of approximately 9, 000 cDNA
clones selected from a set of 20, 000 bee brain expressed sequence
tags (EST). Further, each experiment uses 60 samples of honey bee
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Fig. 1. (a) MSE and (b) MAE curves obtained using the various
normalization methods.

brains (Apis Mellifera) to measure the gene expression levels at two
different growing stages (nurse and forager).

We apply the normalization methods on 12 of the 72 microar-
ray data sets, each one with 1, 000 gene expression levels obtained
from intensity values of Channel-5. The gene expression levels of
Channel-5 is the spot median pixel intensity obtained at scanner laser
wavelength of 635 nm with the spot median background subtracted
[12].

First, we test the accuracy of the normalization algorithms using
the Mean Square Error (MSE) and the Mean Absolute Error (MAE)
between the reference set and the normalized sets as performance
measures. Next, we exploit the boxplot representation to evaluate the
between-slice performance of the various normalization methods. In
all these performance measures, the proposed normalization method
are compared to Wang’s normalization approach [4].

We have implemented Wang’s approach and applied it to the
same microarray data sets. Wang’s approach selects, as initial con-
trol gene subset, those genes with standard deviation across repli-
cation less than a predefined threshold. Furthermore, since Wang’s
algorithm highly depends on the iterative selection of the control
genes that lie inside the window function, we use two different win-
dow parameter sets. The values of the first window parameter set
are fixed in ε1A = 3000, ε2A = 16000 and ε3A = 0.2, and will
be referred throughout the paper as Wang A. As a second selection
function, we used the window parameter set defined by ε1B = 3000,
ε2B = 6000 and ε3B = 0.2 and they will be referred throughout the
paper as Wang B. The parameters of this second window function
were used by Wang et. al in [4].

Figure 1(a) shows the MSE between the reference set and nor-
malized set for both methods. This performance measurement was
used by Wang et. al in [4] to evaluate their normalization method,
but the MSE was computed using only the selected control genes
set. In this paper, however, since all genes are used to analyze the
microarray experiment, and therefore, we compute the MSE using
all gene expression levels to observe the accuracy of the normaliza-
tion methods over the all data set.

As it can be seen in Fig. 1(a), LAD based method outperforms
Wang’s approach in almost all replicated sets. This indicates that
LAD based normalization approaches are robust methods, since these
approaches generate a normalized data closer to the reference data.
Further, LAD based method need not a gene control subset to esti-
mate the normalization coefficients. In contract, the difference be-
tween Wang A curve and Wang B curve evidences that the accuracy
of Wang’s algorithm is affected seriously by the selection of the win-
dow function.

Figure 1(b) shows the MAE between the reference set and each
replicated normalized data set over all gene expression levels. The
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Fig. 2. Boxplot of (a) original microarray sets, (b) LAD normalized
data, (c) Wang A normalized data, (d) Wang B normalized data.

values of MAE obtained by applying LAD based normalization method
are significantly smaller than the corresponding ones obtained using
Wang’s methods. The resultant MAE clearly shows that, under this
performance criterion, the LAD based method is a better normal-
ization procedure than Wang’s method, obtaining lower error values
over all replicated microarray data. These results are in concordance
with the fact that LAD based normalization approach tries to mini-
mize the MAE between the reference set and the normalized set.

A third way to evaluate our normalization methods is by look-
ing the boxplot generated by the normalized data. The boxplot is a
graphic technique widely used in the visualization of the outcomes
of multiple slice microarray normalization methods [13] and allows
us to display a graphical summary of the distribution of each data
set.

Figure 2(a) shows the boxplot generated by the original repli-
cated microarray data and outputted by MATLAB’s boxplot function.
Note that, there is a high variability of interquartile range across the
replicated microarray sets. This behavior indicates that some repli-
cated data sets has a larger spread of the expression levels than oth-
ers. Furthermore, it can be observed that the median of expression
levels varies considerably across the replicated sets, indicating that
the central location of the data has different levels among all data
sets.

Figure 2(b) shows the boxplot of the normalized data sets us-
ing the LAD based normalization method. The spread of the nor-
malized expression levels shows consistency across replicated data
sets. More precisely, a much lower interquartile range variability
across replicated sets and a median value close to a horizontal line is
achieved using the proposed normalization method, satisfying thus
the goals of a good normalization method[13].

For comparison purposes, figures 2(c) and 2(d) shows the box-
plot of the normalized data for Wang A and B, respectively. These
boxplots certainly show a more consistent spread of the data across
replications compared to the raw data boxplot. However, the in-

terquartile range has much more variability than the one obtained
using LAD based normalization approach. Note that, the interquar-
tile range of the last four replicated data sets is smaller than the in-
terquartile range of the remaining sets.

5. CONCLUSIONS

In this article, we propose an iterative normalization method of cDNA
microarray data based on LAD regression. This method uses all gene
expression data in the estimation of the normalization coefficients
and adds robustness to the estimation of the normalization parame-
ters assuming that the errors between replicated sets obey a zero-
mean Laplacian distribution. The behavior of the proposed iterative
normalization method was evaluated using three performance mea-
sures, and these performance measures show that the proposed ap-
proach outperforms other methods based on linear regression. Con-
vergence as well as computation time are ongoing research issues
and will be reported elsewhere.
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