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ABSTRACT

DNA microarray technology relies on the hybridization

process which is stochastic in nature. Probabilistic cross-

hybridization of non-specific targets, as well as the shot-

noise originating from specific targets binding, are among

the many obstacles for achieving high accuracy in DNAmi-

croarray analysis. In this paper, we use statistical model

of hybridization and cross-hybridization processes to derive

a lower bound (viz., the Cramer-Rao bound) on the min-

imum mean-square error of the target concentrations esti-

mation. A preliminary study of the Cramer-Rao bound for

estimating the target concentrations suggests that, in some

regimes, cross-hybridization may, in fact, be beneficial—a

result with potential ramifications for probe design, which

is currently focused on minimizing cross-hybridization.

1. INTRODUCTION

DNA microarrays [1, 2] are affinity-based biosensors where

the binding is based on hybridization, a process in which

complementary DNA strands specifically bind to each other

creating structures in a lower energy state. Typically, the

surface of a DNA microarray contains an array of spots,

each containing identical single strandedDNA oligonucleotide

capturing probes, whose locations are fixed during the pro-

cess of hybridization and detection. Each single-stranded

DNA capturing probe has a length of 25-70 bases, depend-

ing on the exact platform and application [1]. In the DNA

microarray detection process, the mRNA targets that need

to be quantified are initially used to generate fluorescent la-

beled complementary DNA (cDNA) which are applied to

the microarray afterwards. Under appropriate experimen-

tal conditions, labeled cDNA molecules that are a perfect

match to the microarray probes will hybridize, i.e., bind

to the complementary capturing oligos. Nevertheless, there

will always be a number of non-specific bindings since cDNA

may non-specifically cross-hybridize to probes that are not a

perfect match but are rather only partial complements (hav-

ing mismatches). It is important to understand that this par-
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ticular phenomenon, i.e., non-specific binding, is inherent

to all affinity-based biosensors such as DNA or protein mi-

croarrays and also inevitable, given that it originates from

the probabilistic and quantum mechanical nature of molec-

ular interactions present in these system [3]. Finally, the

fluorescent labels in each spot are measured to obtain an

image, having correlation to the hybridization process, and

thus the gene expression levels.

Today, the sensitivity, dynamic range and resolution of

the DNA microarray data is limited by cross-hybridization

[4] (whichmay be interpreted as interference), in addition to

several other sources of noise and systematic error in the de-

tection procedure [5]. The number of hybridized molecules

varies due to the probabilistic nature of the hybridization.

It has been observed that these variations are very simi-

lar to shot-noise (Poisson noise) at high expression levels,

yet more complex at low expression levels where the cross-

hybridization becomes the dominating limiting factor of the

signal strength ([4], [5]). Additionally, the measurements

are also corrupted by the noise due to imperfect instrumen-

tation and other biochemistry independent noise sources.

Typically, cross-hybridization is considered to be hurt-

ful and often attempted to be suppressed by creating more

specific probes. For instance, in the design of DNA mi-

croarrays, the capturing probes are often selected so that the

sequences of nucleotides that comprise them are as unique

as possible, and different from others as much as possible

[6]. Nevertheless, if the application requires distinguish-

ing among similar targets, cross-hybridization is certainly

present and perhaps limiting the accuracy. This may often

be the fundamental limitation in microarrays designed for

diagnostics and single nucleotide polymorphism (SNP) de-

tection, for instance.

2. PROBABILISTIC DNA MICROARRAY MODEL

We consider an m × m DNA microarray, with M ≤ m2

different types of oligonucleotide probes attached to its sur-

face. In other words, a particular oligonucleotide probe may

be present at more than one spot of the array. Each probe

is particularly designed to capture one of the possible tar-

gets in the sample that is required to be detected and quan-

tified. We will assume that a total of n molecules of N
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different types of cDNA targets, N ≤ M , each consisting

of c1, c2, . . . , cN molecules (
∑N

i=1 ci = n), are present in

the sample that is applied to the microarray in the hybridiza-

tion phase. For any target, there may be more than one spot

on the m × m array where the complementary probes are

located; we denote the number of spots with probes that are

complements to the target of the type i byMi, and note that∑M
i=1 Mi = m2. The array is scanned after the system has

reached bio-chemical equilibrium. The resulting image has

information about the number of targets captured at each

spot and the goal is to detect which targets are present and

to estimate their unknown concentrations ci.

In general, in addition to hybridization to its matching

oligonucleotide probe, each target molecule of type i may

also engage in non-specific cross-hybridization with probes

whose nucleotide sequences are only partly matches with

the target. We assume that both hybridization and cross-

hybridization are random events. Let qli and nli denote the

probability of binding and the total number of bound target

molecules of type i to probe l, respectively. Since the total

number of target molecules of type i that are available is

given by ci, the distribution of nli is given by

p(nli = x) =

(
ci

x

)
qx
li(1 − qli)

ci−x . (1)

Since the number of molecules involved is large, this is well

approximated by a Gaussian random variable with the same

mean qlici and variance qli(1 − qli)ci. Furthermore, since

the nli are independent, nl is well approximated by a Gaus-

sian random variable with mean
∑N

i=1 qlici and variance∑N
i=1 qli(1 − qli)ci.

Arranging the nli into a m2 × 1 column vector n =[
n1 n2 . . . nm2

]T
, the measurement obtained from

a DNAmicro-array is s = n+v, where v is the noise due to

imperfect instrumentation and other biochemistry indepen-

dent noise sources and can be well modeled as having iid

Gaussian entries with zero mean and variance σ2. Recall

further that n also can be represented as having indepen-

dent Gaussian entries with mean
∑N

i=1 qlici and variance∑N
i=1 qli(1−qli)ci. Thus defining theN ×1 column vector

c = 1
m2

[
c1 . . . cN

]T
we may write

s = Qc + w + v, (2)

where Q is the matrix with (l, i) component qli and w is a

zero-mean Gaussian random vector with covariance matrix

Σw = diag(
N∑

i=1

q1i(1 − q1i)ci, . . . ,

N∑
i=1

qm2i(1 − qm2i)ci).

(3)

Equation (2) is the relationship between the measured

signal s and the unknown target concentrations c. Note that

once Q and σ2 are given the model is fully specified. Ma-

trix Q can be obtained either from calibration experiments

or via analytical expressions such as ∆G, melting temper-

ature, etc. (see, e.g., [7]). Furthermore, note that the un-

known concentrations (the ci) are also present in the covari-

ance matrix of w. In fact, this means that we have a shot

noise model.

Remark: Note that we restrict ourselves to the case where
saturation is not met, i.e., we will assume that the concen-

tration of target molecules relative to the number of probes

is low. Thus, the parameters of the system model are con-

stant and do not depend on the number of target molecules

that are bound to different probes.

3. OPTIMAL ESTIMATION OF TARGET
CONCENTRATIONS

The maximum-likelihood (ML) estimate of the target con-

centrationsmaximizes the probability p
s|c(s|c), i.e., it is ob-

tained by solving the optimization problem

max
c≥0

p
s|c(s|c), (4)

where, due to Gaussian distribution of both w and v, we

have

p
s|c(s|c) =

1

(2π)M/2 det(Σs)1/2
e−

1

2
(s−Qc)T Σ−1

s
(s−Qc),

where the covariancematrixΣs is given byΣs = σ2I+Σw.

The optimization (4) is equivalent to the minimization

min
c≥0

[
(s − Qc)∗Σ−1

s (s − Qc) + log detΣs

]
. (5)

Note that the above problem is highly nonlinear and

non-convex (because the ci are present in both c and Σs).

It can be, at best, solved via some iterative procedure. A

good initial condition for any such iterative method can be

found from the deterministic least-squares solution obtained

by solving

min
c≥0

‖s− Qc‖2.

We tested our hypotheses regarding the statistical model

and verified performance of the estimation algorithms on

real microarray data obtained through a set of experiments.
The oligonucleotide probes in these experiments are from

a commercial set chosen from genes of the bacterium Es-
cherichia coli; the oligonucleotide targets are custom de-
signed. We omit the specifications of the experiments due

to the lack of space and refer interested reader to [8] for

details.

Figure 1 shows measured and estimated signal in an ex-

periment where two targets were applied to a microarray.

Due to cross-hybridization, direct readout implies presence

of four targets. The estimation algorithm correctly detects

presence of only two targets, and precisely recovers their

concentrations.
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Fig. 1. Measured and estimated signal in an experiments
where two targets were applied to a microarray. Due to
cross-hybridization, direct readout implies presence of
four targets. The estimation algorithm correctly detects
presence of only two targets, and precisely recovers their
concentrations.

4. LIMITS OF PERFORMANCE

The minimum mean-square error of any estimation proce-
dure is lower bounded by the Cramer-Rao bound [9]. As-

suming an unbiased estimator, the Cramer-Rao lower bound

(CRLB) on the minimummean-square error of estimating a

parameter ci is given by

E (ĉi − ci)
2
≥ [F−1]ii, (6)

where the Fisher information matrix F is given by the nega-

tive of the expected value of the Hessian matrix of log p
s|c(s).

In other words, the entries of F are given by

Fij = −Es

∂2

∂ci∂cj
log p

s|c(s). (7)

Since the expectation is over only s, F (and hence the CRLB)

is a function of c. We shall further find it convenient to de-

fine the entries of the Hessian matrixH as

Hij =
∂2

∂ci∂cj
log p

s|c(s).

Note now thatH is a function of both s and c.

In our case, the function whose second derivative we

desire is

L(c) = −
M

2
log(2π)−

1

2
log detΣs−

1

2
(s−Qc)T Σ−1

s (s−Qc).

After computing the Hessian (details omitted for brevity),

we obtain

F = QT Σ−1
s Q +

1

2
(Q−Q�Q)T Σ−2

s (Q−Q�Q). (8)

Our end result therefore is E (ĉi − ci)
2
≥[(

QT Σ−1
s Q +

1

2
(Q − Q � Q)T Σ−2

s (Q − Q � Q)

)−1
]

ii

.

(9)

4.1. Comparison with direct readout

Note that, being unbiased, the maximum-likelihood esti-

mate (5) achieves the Cramer-Rao bound in (9). In most

current applications of micro-arrays, one assumes thatN =
m2 and estimation is performed by direct readout. In this

case it is easy to see that the mean-square-error of direct

readout is given by

Es(s− c)(s − c)T = (Q − I)ccT (Q − I)T + Σs. (10)

Comparing (10) with (9) for a given system model and con-

centrations, provides a measure of the improvement of the

techniques proposed in this paper over the methods that em-

ploy direct readout.

4.2. The effect of cross-hybridization

In current micro-array technology a great deal of effort is

put into the design of the probes (often using some time-

consuming form of combinatorial optimization) in such a

way so as to minimize the effect of cross-hybridization. In

some important applications, such as SNP detection, the de-

sired targets are inherently similar and so eliminating the

effect of cross-hybridization may not be possible.

Moreover, using the algorithms described in this paper,

it may be that cross-hybridization can be turned to one’s

advantage. Take, for simplicity, the extreme case where our

sample has only a single target, i.e., N = 1. If an array
has been designed so that it has no cross-hybridization then,

assuming the target present is the first target, it will only

bind to probe site number one and not to any of the other

sites. The Fisher matrix from (9) therefore becomes

Fnc
11 =

q2
11

σ2 + q11(1 − q11)c1
+

1

2
·

q2
11(1 − q11)

2

(σ2 + q11(1 − q11)c1)2
.

(11)

Assume now that the array does have cross-hybridization,

i.e., that target 1 can bind to probe k with probability qk1.

The Fisher matrix now becomes

F c
11 =

∑m2

k=1

[
q2

k1

σ2+qk1(1−qk1)c1

+ 1
2 ·

q2

k1
(1−qk1)2

(σ2+qk1(1−qk1)c1)2

]
= Fnc

11 +
∑m2

k=2

[
q2

k1

σ2+qk1(1−qk1)c1

+ 1
2 ·

q2

k1
(1−qk1)2

(σ2+qk1(1−qk1)c1)2

]
and thus F c

11 > Fnc
11 . In other words, the existence of cross-

hybridization improves the accuracy of our estimate of tar-

get 1.
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Of course, as one increases the number of targets be-

yond N = 1, one would expect the improvement in accu-
racy to diminish and, in fact, for large enough N for the

accuracy to degrade compared to the case of no hybridiza-

tion. However, for what value of N this transition occurs

depends very much on the values of the parameters σ2 and

Q, on the concentration of the targets ci, and on the number

of probesm2.

To illustrate this, consider an artificial example where

we haveN targets that hybridize to their corresponding probes

with probability qii = q and that cross-hybridize to all other

(m2 − 1) probes with probability qij = β, i �= j. Fur-

thermore assume that the concentration of all N targets are

identical, i.e., ci = c, for i = 1, . . . , N . (The reason for

choosing such symmetric parameters is that it will allow us

to explicitly compute the inverse of the Fisher matrix F .

We hope it will also give some insight into the more general

setting.) With these parameters it is not difficult to see that

[
F−1

]
11

=
1

a − b
·
a + (N − 2)b

a + (N − 1)b
. (12)

This is the CRLB that should be compared with the one

without cross-hybridization in (11). Figure 2 does this com-

parison for the parameters σ2 = 1000, c = 500,m2 = 100
(i.e., a 10 × 10 array), q = 0.3 and β = 0.01. As can be
seen from the figure, cross-hybridization is, in fact, benefi-

cial when the number of targets is N ≤ 6. Therefore, our
artificial example seem to indicate that there is benefit in

having cross-hybridization in scenarios where the number

of targets of interest in a given sample is much less than the

number of probes on the array.

5. SUMMARY AND CONCLUSIONS

We computed the Cramer-Rao bound for error of target con-

centrations estimation in DNA microarrays. The bound is

derived assuming a statistical model for DNA microarrays

based on a probabilistic description of the hybridization and

cross-hybridization processes. The statistical model cap-

tures the shot noise nature of the noise in DNA microarrays

that has been earlier observed experimentally [4].

Typically, probe design is based onminimizing the amount

of cross-hybridization (see, e.g., [6] and the references therein).

However, some preliminary studies of the Cramer-Rao bounds

suggest that cross-hybridization may, in fact, be beneficial

in certain scenarios. In particular, if we have only a few

target types present in the sample (as is often the case in di-

agnostic applications), the existence of cross-hybridization

can lead to more accurate estimates of the target concentra-

tions, simply because there are more sites where the targets

can bind, thus increasing the signal strength. This result

may have ramifications for probe design.
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Fig. 2. The CRLB with and without cross-hybridization
as a function of the number of target types N . The pa-
rameters are σ2 = 1000, c = 500, m2 = 100, q = 0.3,
and β = 0.01.
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