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ABSTRACT

In this paper, a new feature vector for each pixel, in conjunction with

the K-nearest neighbour classifier, is proposed for the segmentation

of retinal blood vessels in digital colour fundus images. The pro-

posed feature vector consists of two scale-space features - the largest

eigenvalue and the gradient magnitude - of the intensity image, rep-

resenting the two attributes of any vessel, i.e. the piecewise linearity

and parallel edges, as well as the green channel image intensity. In

terms of sensitivity and specificity, our results are comparable with

other supervised method which uses a set of 31 features, yet in terms

of processing time, our method uses a smaller number of features

and results in a significant reduction in the processing time.

1. INTRODUCTION

Automatic segmentation of blood vessels in retinal images is very

important in early detection and diagnosis of many eye diseases. It

is an important step in screening programs for early detection of di-

abetic retinopathy [1], registration of retinal images for treatment

evaluation [2] (to follow the evaluation of some lesions over time or

to compare images obtained under different conditions), generating

retinal map for diagnosis and treatment of age-related macular de-

generation [3], or locating the optic disc and the fovea [4].

Methods for blood vessels segmentation of retinal images, ac-

cording to the classification method, are divided into two groups,

supervised and unsupervised methods. Unsupervised methods in

the literature comprises the matched filter responses, edge detectors,

grouping of edge pixels, model based locally adaptive thresholding,

vessel tracking, topology adaptive snakes, and morphology-based

techniques [5]. Supervised methods, which required manually la-

belled images for training, are the recent approaches in vessel seg-

mentation and use the neural networks [1], or the K-nearest neigh-

bour classifier [5, 6] for classifying image pixels as blood vessel or

non-blood vessel pixels.

Scale-space features such as the gradient magnitude of the image

intensity and the ridge strength, both at different scales, are com-

bined with region growing to segment the blood vessels from red-

free and fluorescein clinical retinal images [7]. Also, the 1st and

2nd derivatives - of the green channel image, in x and y directions

[6], or with respect to other image coordinates [5] at different scales

- are used as features for every pixel in the retinal images. Because

taking derivatives of discrete images is an ill-posed operation, these

are taken at a scale s using the Gaussian scale-space technique [8].

Niemeijer et. al. [6] proposed a pixel classification method where

the KNN classifier is used with 31 features to classify the pixels in

retinal images to vessel and non-vessel pixels, these features are the

green channel image, and the filtered image using the Gaussian and

its derivatives at different scale values.

In this paper, we propose to use three features only as inputs to

the supervised classifier KNN to classify the pixels in colour retinal

images to vessel and non-vessel pixels. Therefore, the dimension-

ality of the feature space and the processing time can be reduced.

For purposes of comparison, we compare between using the largest

eigenvalue, gradient magnitude and the green channel image inten-

sity as features, and the 31 features proposed in [6] to demonstrate

the effect of the reduced feature vector on the performance of the

classifier and the processing time.

2. FEATURE EXTRACTION AND CLASSIFICATION

2.1. Feature Extraction

The two characterising attributes of any vessel, i.e. piecewise linear-

ity and parallel edges [9], are considered when choosing the set of

features for every pixel in retinal images. The piecewise linear prop-

erty of a blood vessel can be recognised by extracting centerlines

of blood vessels, simply by extracting the image ridges. The par-

allel edges property is well recognised by calculating the gradient

magnitude of the image intensity. Because the vessels are of differ-

ent diameters, so these features are extracted at different scales and

then the local maxima over all scales is calculated for both features.

In addition to the property that the blood vessel can be seen in the

colour retinal image as a dark object on a brighter background, from

the three colour channels (red, green and blue) the green channel is

chosen to represent this characteristic as it has the highest contrast

between the blood vessel and the retinal background.

The features used in this paper are the green channel intensity,

the local maxima of the gradient magnitude, and the local maxima of

the largest eigenvalue. Fig. 1 shows a sub-image with the intensity

information for a blood vessel section is plotted along with the gra-

dient magnitude, the ridge strength and the largest eigenvalue. From
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Fig. 1. Sub-image with colour and scale-space features. (a, b, c, d,

e) sub-image and its intensity along a horizontal line crossing a blood

vessel, gradient magnitude, ridge strength, and largest eigenvalue

from red channel image, (f, g, h, i, j) the same but for sub-image

from the green channel image.

the graphs, it is clear that the green channel has a higher contrast

than the red channel image, gradient magnitude gives two peaks at

the parallel edges of the blood vessels, and finally the largest eigen-

value is better than the ridge strength in determining the centerlines

of the blood vessels when processing colour fundus images.

The Gradient Magnitude (maximum over scales)

The gradient magnitude is calculated as:

|�L| =
q

L2
x + L2

y (1)

Lx = I(x, y) ⊗ sGx

Ly = I(x, y) ⊗ sGy (2)

where Lx and Ly are the first derivative of the image in the x and

y directions, Gx and Gy are the Gaussian derivatives in the x and y

directions, and s is the scale parameter [8].

The gradient magnitude of the image intensity is calculated at

different scales [7], then the local maxima of the gradient magnitude

γ is calculated as:

γ = max

s

»
|�L(s)|

s

–
(3)

The Largest Eigenvalue (maximum over scales)

The eigenvalues (the large eigenvalue, λ+, and the small eigenvalue,

λ
−

) of the Hessian, the matrix of the second order derivatives, of the

intensity image I(x, y) are calculated as [7]:

λ+ =
Lxx + Lyy + α

2
(4)

λ
−

=
Lxx + Lyy − α

2
(5)

where α =
p

(Lxx − Lyy)2 + 4L2
xy

Then, the local maxima of the largest eigenvalue λmax is calcu-

lated as :

λmax = max

s

»
λ+(s)

s

–
(6)

2.2. K-Nearest Neighbour Classifier

The nearest neighbour classifier is one of the simplest and oldest

methods for performing general, non-parametric classification [10].

To classify an unknown pixel xq, choose the class of the nearest ex-

ample in the training set as measured by a distance metric. A com-

mon extension is to choose the most common class in the K nearest

neighbours. Let an arbitrary pixel x be described by the feature vec-

tor:

< a1(x), a2(x), ...an(x) >

where ar(x) is used to denote the values of the rth attribute of pixel

x. If we consider two pixels xi and xj , then the distance between

these pixels is defined as d(xi,, xj), which is expressed in Eq. 7

d(xi, xj) =

vuut nX
r=1

(ar(xi) − ar(xj))2 (7)

For hard classification, the KNN output is the most common value

among K training examples nearest to xq, while the mean value of

the K nearest neighbour examples is calculated, instead of the most

common value, for soft classification.

3. EXPERIMENTS

In our experiments, a set of 20 images publicly available [11] are

used, where 10 are normal and 10 contain pathology. For supervised

classifiers, two sets are required; one for training and the other for

testing. The dataset is randomly divided into two sets of images,

each contains 5 normal and 5 abnormal images. The training set

contains large number of training samples, which is the main prob-

lem with this type of classifiers. To overcome such a problem, a

random number of pixels is chosen from the field of view (FOV) of

each image in the training set. The targets for these training sam-

ples are available from the manually segmented images. The testing

set contains 10 images to test the performance of the classifier. For

every pixel in each retinal image in the dataset, a feature vector is

generated which contains three values - the pixel intensity from the

green channel image, the local maxima of the gradient magnitude,

and the local maxima of the largest eigenvalue.

Having experimented with different values of K, the value of

K = 60 appears to offer the best results; hence this value is cho-

sen in our experiments. Furthermore, different normalisation meth-

ods have been explored and finally the choice of normalising each

feature to zero mean and unit standard deviation offers good per-

formance. The performance is measured with Receiver Operating

Characteristic (ROC) curves. An ROC curve plots the false positive

rates against the true positive rates, and these rates are defined in the

same way as in [12].
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Fig. 2. (a) Colour images, (b) output of the KNN classifier using 3 features, (c) output of the KNN classifier using 31 features and (d) ROC

curves for images in (b and c).

4. RESULTS AND DISCUSSION

4.1. Results

Figure 2 shows two examples, abnormal and normal images, after

blood vessels segmentation using KNN classifier with the proposed

set of features and the 31 features in [6] and their corresponding ROC

curves, In normal image, the two sets of features gives approximately

the same results, but in case of abnormal image, the three features

give higher sensitivity at the same specificity values. Average ROC

curves are considered for specificity and sensitivity analysis and the

results for segmentation of retinal blood vessels is summarised in

Table 1, where the average sensitivity is calculated at certain speci-

ficity values for normal and abnormal images in the testing set. The

processing time is significantly decreased when using three features

instead of 31 features.

Results obtained from the KNN classifier show that there is a

need for a post-processing step to remove some connected compo-

nents that are not blood vessels in order to improve the performance

of the classifier. In this step, iterative thresholding strategy to re-

move small segments is proposed. The processed image (output im-

age from the classifier) is thresholded and segments of size less than

15 pixels are removed, then the threshold value is incremented and

small segments are removed and this process is repeated until no

more pixels are removed. Fig. 3 shows the effect of removing the

small segments on the images in Fig. 2. Further investigations are

under way to improve the post-processing step.

Image Specificity 3 Features 31 Feature

type % Sensitivity %

Normal 86.60% 89.24%

Abnormal 95% 76.24% 77.91%

Normal 92.56% 94.32%

Abnormal 90% 86.13% 86.19%

Normal 95.03% 96.40%

Abnormal 85% 90.89% 90.18%

Normal 96.51% 97.45%

Abnormal 80% 93.65% 92.67%

Processing time 33% 100%

Table 1. Average sensitivity at certain specificity values and pro-

cessing time for 3 and 31 features.

4.2. Discussion

As demonstrated in Table 1, at specificity of 90%, the proposed three

features gives promising results of 93% and 86% sensitivity for nor-

mal and abnormal images respectively compared with the pixel clas-

sification method that uses a set of 31 features and gives 94% and

86% sensitivity for normal and abnormal images. Furthermore, at

specificity of 95%, the sensitivity of the proposed method is 87%

and 76% compared with 89% and 78% sensitivity of the pixel clas-

sification method for normal and abnormal images respectively. One

of the factors that should be considered when using supervised clas-

sifiers is the size of feature vector. As the size of the feature vector
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Fig. 3. Effect of post-processing (a) before, and (b) after post-

processing.

increased, the processing time is increased, as shown in Fig. 4.

5. CONCLUSIONS

In this paper, we have proposed to use feature vectors of three fea-

tures each with the KNN classifier to classify the pixels of retinal

images as vessel pixels or non-vessel pixels. The local maxima of

the largest eigenvalue has been proposed to be used as a feature in

addition to the green channel and the local maxima of the gradient

magnitude of the intensity image. Results have shown that using

these three features significantly reduces the processing time with

comparable sensitivity to the pixel classification method that uses 31

features.
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