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ABSTRACT

In analysis of fMRI data, it is common to average neighbor-

ing voxels in order to obtain robust estimates of the correla-

tions between voxel time-series and the model of the signal

expected to be present in activated regions. We have previ-

ously proposed a method where only voxels with similar cor-

relation coefficients are averaged. In this paper we extend this

idea, and present a novel method for analysis of fMRI data.

In the proposed method, only voxels with similar correlation

coefficients and similar time-series are averaged. The pro-

posed method is compared to our previous method and to two

well-known filtering strategies, and is shown to have superior

ability to discriminate between active and inactive voxels.

1. INTRODUCTION

Analysis of functional MRI data deals with the problem of

detecting very weak signals in very noisy data. The common

solution to this problem is to average the time series from

neighboring pixels or voxels, and thereby enhance the signal

to noise ratio [1]. In practice, this is done by convolving the

slices (or volumes) with a fixed low-pass filter kernel, e.g. a

gaussian. The price to pay for this kind of noise reduction

is loss of spatial resolution. Loss of spatial resolution means

that the shape of activated regions cannot be accurately deter-

mined and, perhaps worse, that small activated regions may

remain undetected.

In order to maintain high spatial resolution, the spatial

low-pass filtering can be made adaptive and non-isotropic.
This means that for each voxel, the size and shape of the local

region, in which the averaging is performed, is data depen-

dent. A method for adaptive spatial filtering based on canoni-

cal correlation analysis (CCA) has previously been suggested

[2]. That method chooses the size and shape of the local av-

eraging region, i.e. the resulting adaptive filter, such that the

correlation between the averaged time series and the model
of the blood oxygen level dependent (BOLD) response model

is maximized. This makes the method very sensitive. Indeed,

the method is so sensitive that restrictions have to be imposed

on the number of parameters in the adaptive filter and their
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ranges in order to maintain a reasonable selectivity. If given

too much freedom, the method may find false signals in the

noise since the filter is optimized for making the filter output

as similar to the BOLD response model as possible. Another

problem with this method is that when the filter is centered in

a non-activated voxel but close to an activated region, the fil-

ter will try to ”reach in” to the activated region in order to pick

up as much activation as possible. This will make the result-

ing regions labeled as active become larger than they should

be, i.e. a growing of activated regions will occur.

We have previously proposed an alternative method for

adaptive filtering [3]. That method is based on averaging of

voxels which have similar correlation with the BOLD model,

and has the advantage that edges between active and inactive

regions are preserved. We here present an extension of this

filtering scheme, where voxels to be averaged are not only

required to have similar correlation with the BOLD model,

but should also have similar time-series. We also show that

this modification provides a significant improvement of the

detection performance.

2. THEORY

When ordinary low-pass filtering is used for noise reduction,

voxels that are spatially close to each other are treated as sam-

ples from one distribution, and a weighted average of the vox-

els in a neighborhood is used as an estimate of the true signal

value in the center of that region. The weights are predeter-

mined and based on the distance from the center of the neigh-

borhood. Close to edges in an image, the voxel values are

actually samples from two or more distributions, and using

predetermined weights for averaging causes blurring of the

edges. Bilateral filtering [4, 5] extends low-pass filtering by

also considering the distance between the value of a certain

voxel and that of the center voxel, thereby creating a differ-

ent filter kernel in each neighborhood. This approach causes

voxels from the other side of an edge to be treated as out-

liers, and thus their effect on the estimate of the true signal

value is reduced or eliminated. An example of using low-

pass filtering and bilateral filtering, respectively, of a noisy

one-dimensional signal is shown in figure 1. The signal is a

step function with additive gaussian noise, and it is obvious
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(a) Noisy data (b) After low-pass

filtering

(c) After bilateral

filtering

Fig. 1. Noisy data before and after low-pass and bilateral
filtering.

that low-pass filtering causes blurring of the edge while it is

preserved by bilateral filtering.

The bilateral filter kernel in each neighborhood can be ex-

pressed as a product of two filter kernels: the spatial filter Fs

and the range filter Fr. The spatial filter is based on spatial

distance, and corresponds to the filter kernel used in low-pass

filtering, while the range filter is based on the difference in

image intensity. That is, given an image I(x, y), the bilateral
filter kernel F (∆x, ∆y) at image coordinates (x, y) can be
written

F (∆x, ∆y) = Fs(∆x, ∆y) · Fr(∆x, ∆y) (1)

whereFs(∆x, ∆y) is an ordinary spatial filter kernel g(∆x, ∆y)
and the range filter is defined as

Fr(∆x, ∆y) = h(I(x + ∆x, y + ∆y) − I(x, y)) (2)

A common choice of the filter kernels g and h is gaussian

functions.

3. METHOD

Godtliebsen et al [6] have proposed using bilateral filtering

of the raw fMRI data, with a time dimension in addition to

the spatial and range dimensions described above. Our previ-

ous method is similar to bilateral filtering, but instead of bas-

ing the range filter on differences in image intensity, we base

it on the difference in correlation between individual voxel

time-series and the BOLD model. Furthermore, instead of

using the correlation coefficients directly, we use a mapping

of the correlation. The reason for using this mapping is that

the correlation coefficients are not readily comparable on a

linear scale. The mapping is defined as

Λ(x, y) = log
( 1

1 − ρ(x, y)2

)
(3)

where ρ(x, y) is the correlation between the time-series at co-
ordinates (x, y) and the BOLD model. Under certain condi-
tions this measure, which is the logarithm of Wilks’ lambda,

is equivalent to mutual information.

Here we propose an extension of the previous method,

where we use two range filters. One of these (Fr1
) is iden-

tical to the range filter described above, while the other (Fr2
)

is based on the similarity between the intensity time-series

themselves. That is, two spatially close voxels are averaged if

their individual correlations with the BOLDmodel are similar

and their time-series resemble each other.
Often, the BOLD model used in fMRI data analysis is a

linear subspacemodel, i.e. a model with two ormore temporal

basis signals. The correlation between a time-series and the

model is then defined as the highest correlation between the

signal and any linear combination of the model basis signals.

The model basis can, for example, be generated by perform-

ing principal component analysis of a large number of simu-

lated BOLD responses, generated by Buxton’s balloon model

[7]. We propose that such a subspace model is used, and use

the angle between the projections of two time-series onto the

model subspace as a measure of similarity between the two

time-series. (In experiments with more than one stimuli, a

linear subspace model can instead be based on the expected

responses from each of the stimuli.) By measuring the angle

in the signal subspace, large random variations that are due to

the high noise levels in the data are disregarded. If the time-

series were directly compared to each other, any similarity

would remain undetected because of the noise.

Simply combining the spatial and range filters would, at

each coordinate (x, y), yield a filter

F (∆x, ∆y) = Fs(∆x, ∆y) · Fr1
(∆x, ∆y) · Fr2

(∆x, ∆y)
(4)

which averages over voxels that are close to each other, where

the correlationwith the BOLDmodel is similar, and where the

projection of the signal onto the BOLD model basis functions

is similar. However, this is generalized slightly by introducing

the parameters α, β and γ as follows:

F (∆x, ∆y) = Fs(∆x, ∆y)α ·Fr1
(∆x, ∆y)β ·Fr2

(∆x, ∆y)γ

(5)

These parameters can be used to tune the relative importance

of the different filters. The parameters can even be variable,

to accommodate different weightings of the filter kernels in

different neighborhoods. This makes the proposed method

very general. We do, however, here propose specific choices

of the parameters.

As was mentioned in the last section, it is common to

choose Fs and Fr to be gaussian functions. Accordingly, we

suggest that all of Fs, Fr1
and Fr2

are selected as such. Thus,

Fs(∆x, ∆y) = exp
(
−

ds(∆x, ∆y)2

2σ2
s

)
(6)

Fr1
(∆x, ∆y) = exp

(
−

dr1
(∆x, ∆y)2

2σ2
r1

)
(7)

Fr2
(∆x, ∆y) = exp

(
−

dr2
(∆x, ∆y)2

2σ2
r2

)
(8)
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where the distance measures are defined as

ds(∆x, ∆y) =
√

∆x2 + ∆y2 (9)

dr1
(∆x, ∆y) = Λ(x, y) − Λ(x + ∆x, y + ∆y) (10)

dr2
(∆x, ∆y) = (11)

arccos(ŵ(x, y) · ŵ(x + ∆x, y + ∆y))

The different σ:s are the standard deviations of the respective

gaussian functions and ŵ(x, y) is the projection direction in
the subspace model for the time-series at coordinates (x, y).
The values of the exponents α, β and γ should be in the

range from 0 to 1, where 0 means that the filter has no effect
and 1 means that the filter has full effect. This implies that
setting α = β = 1 and γ = 0 yields our previous method as
a special case. We propose that these parameters are used as

weights for the different filters according to the certainties of

their respective distance measures. The exact spatial distance

is always known, and thus its certainty α = 1. There is no
good certainty estimate for the correlation, and thus we also

propose that β is constant, for example β = 1. However, the
certainty of the projection onto the subspace model is related

to our estimate of the correlation. The higher the correlation

estimate, the more certain the projection direction is. Thus we

select

γ(∆x, ∆y) = 4

√
|ρ(x, y)ρ(x + ∆x, y + ∆y)| (12)

i.e. the square root of the geometric mean of the correlations

in the two pixels under consideration. The choice of the square

root is not of crucial importance, but it appears to provide

a better weighting than using the geometric mean directly.

Then, in regions where the correlation is high, the filter based

on time-series similarity will be important, while in other re-

gions it will have little or no effect. This is an advantage in

both active and inactive regions. In inactive regions, the cor-

relation is low and the similarity between the time-series is

random. By ignoring the second range filter (Fr2
) in these

regions, the final filter will average over larger areas, thus re-

ducing the probability of finding spurious correlations in the

noise. In these regions, Fr1
precludes filters that would pick

up signal from activated voxels. In active regions, on the other

hand, the correlations are higher and thus Fr2
has effect. This

decreases the risk of extending the effective filter beyond the

active region.

An example of the different filter kernels is shown in fig-

ure 2. Figure 2a shows where activity has been embedded in

the noise in an artificial data set. In figure 2b, the spatial filter

Fs is shown. Figures 2c and d show the range filters Fr1
and

Fr2
when they are located in the dashed square in figure 2a.

In this case, the center pixel is located in an activated region.

It is clear that the two range filters complement each other,

excluding pixels outside of the activated region from the av-

eraging. In figure 2e the resulting filter obtained by combin-

ing Fs, Fr1
and Fr2

according to equation 5 is shown. The

coefficients in this filter are used as weights for averaging the

(a) Activated

locations

(b) Spatial filter Fs (c) Range filter Fr1

(d) Range filter Fr2
(e) Resulting filterF (f) Resulting filter

with inactive

center pixel

Fig. 2. Example of filter kernels based on the different dis-
tance measures, and final filter combined using equation 5.

The resulting filter in figure e is used for weighting the time-

series in the region surrounded by the dashed line in figure

a.

time-series in the marked region. As can be seen in the fig-

ure, the filter has almost zero weight for inactive pixels but

large weights for spatially close pixels with activation similar

to that of the center pixel. If the center pixel had been located

beside the active region, a filter with large weights for inactive

pixels and small weights for active pixels would instead have

been obtained. Such a resulting filter, where the center pixel

is just outside of the active part of the marked region in figure

2a, is shown in figure 2f.

When the filters F (∆x, ∆y) have been created at each
coordinate (x, y), they are used to filter the raw data in each
timepoint. After this, each time-series in the resulting data is

analyzed separately to detect activation.

It is important to notice that this is different from calculat-

ing the correlation in each pixel and then performing bilateral

filtering of the correlation map.

4. RESULTS AND DISCUSSION

The proposed method has been evaluated on both real and

synthetic data. Figures 3b-e show correlation maps gener-

ated by analyzing simulated data using fixed low-pass filter-

ing, adaptive filtering using CCA, adaptive filtering using our

previous method and adaptive filtering using the proposed

method, respectively. The areas where BOLD-like signals

were embedded in the noise are shown in figure 3a. The signal

to noise ratio of the simulated data is approximately 5 – 10 %.

Brighter regions in figure 3a have higher SNR. The noise is

gaussian, with spatial autocorrelation similar to that found in

real fMRI data.
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(a) Locations with

simulated

activation

(b) Fixed

low-pass

filtering

(c) Adaptive

filtering based

on CCA

(d) Our previous

method

(e) The proposed

method

Fig. 3. Locations with simulated activity and active regions
detected using the different analysis methods.

In figure 4, receiver operating characteristic (ROC) curves,

showing the sensitivity (ability to correctly classify active vox-

els) versus the specificity (ability to correctly classify inactive

voxels) of the different methods, are displayed.

It is evident from the ROC curves that the methods based

on bilateral filtering have superior ability to discriminate be-

tween active and inactive voxels in the simulated data. This is

also supported by the correlation maps in figures 3d-e, which

show sharper edges between active and inactive regions than

the correlation maps generated by the CCA method and the

method based on a fixed filter. This edge-preserving prop-

erty is clearly an advantage of these methods. While the visi-

ble difference between the correlation map from our previous

method and that from the proposed method is not very large,

the ROC curves clearly show that the proposed inclusion of a

second range filter, based on time-series similarity, provides

a further enhancement of the detection performance. This is

to be expected, since the new range filter reduces the risk of

creating too large filters.

Figure 5 shows activation detected in real data from a fin-

ger tapping task, overlaid on an anatomical image of the brain.

The activation in the motor cortex is consistent with the task.

Although themethod is here presented for two-dimensional

filtering, a generalization to three dimensions is straight-forward.

Since three-dimensional filtering utilizes the correlations be-

tween neighboring slices, further improvements of the detec-

tion performance is expected.

5. CONCLUSION

A new method for adaptive filtering of fMRI data has been

presented and evaluated. The method, which is based on bi-
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Fig. 4. ROC curves for the different analysis methods. The
proposed method provides the best detection performance.

Fig. 5. Activation detected using the proposed method on
real data from a finger tapping experiment. As expected, the

detected activation resides in the motor cortex.

lateral filtering, extends our previous fMRI analysis scheme.

Experimental results have shown that the new method pro-

vides improved activation detection performance.
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