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ABSTRACT

Multivariate methods such as Principal component analy-
sis (PCA) and Independent component analysis (ICA) have
been found to be useful in functional magnetic resonance
imaging (fMRI) research. They are often able to decom-
pose the fMRI data so that the researcher can associate their
components to some biological processes of interest such
as the brain response resulting from a stimulus. In this pa-
per we develop a new smooth version of the PCA derived
from a maximum likelihood framework. We are thus led to
an unusual use of AIC,BIC namely to choose two (rather
than one) parameters simultaneously; the number of prin-
cipal components and the degree of smoothness. The algo-
rithm is applied to real fMRI data.

1. INTRODUCTION

The term functional Magnetic Resonance Imaging (fMRI)
refers to the use of a Magnetic Resonance (MR) scanner to
measure (dynamic) functional activity in the brain by means
of rapid acquisition of images of brain state. This technol-
ogy has made it possible to observe brain activity under
some stimulus and thus study which brain regions are in-
volved when a subject performs a particular task and there-
fore better understand human brain organization and func-
tion.

fMRI depends on the fact that neuronal activity induces
a regional change in the oxygenation level of the blood which
can be detected by the MR scanner [1]. This is called blood
oxygen level dependency (BOLD) response. The BOLD
response is often modelled as a hump like function that
reaches maximum in about 5 seconds and then dies out about
10 seconds later [2].

In a typical experiment an MRI scanner is used to record
signals that can be used to construct a sequence of brain im-
ages with a typical sampling time 2-5 sec while the subject
reacts to a stimulus, e.g., auditory, visual, motor, etc. A
typical blocked experiment usually consists of two states;
the control state and a functional state. The functional state

could for example involve finger tapping or a visual fixation
on a flickering image and the rest state involves no motor
action or visual fixation on non-flickering image. More re-
cently event-related studies [3], where the brain response to
brief stimulus is explored, have become more common.

fMRI data acquisition and image reconstruction yields
spatiotemporal data. The data is contained in a T × M ma-
trix Y = [yt,v] where T is the number of time points and M
is the number of voxels (3D analogue of pixel). The T × 1
vector yv will refer to a column vector of Y and represents a
voxel v and its associated time series. The 1×M vector yT

(t)

is a row vector of Y and represents a brain image scanned
at time t.

Two main paths of analysis are currently used in fMRI
research; univoxel analysis and multivoxel analysis. In uni-
voxel analysis [4] response at each voxel is modelled sepa-
rately as a sum of BOLD response, noise and possible some
nuisance signals. Then an inference is made on each voxel
to determine if it is activated or not. An activation map is
then constructed which is a binary map that can be over-
layed on a brain map for interpretation. Multivoxel analy-
sis unlike univoxel analysis do not need information about
the stimulus. They seek to find temporal or spatial com-
ponents that are due to motion, activation etc., that are ei-
ther unexpected or difficult to model. These components
can then be visualized and interpreted or used for modelling
purposes. The two most common exploratory methods in
fMRI research are Principal component analysis (PCA) [5]
that finds temporal/spatial components of maximal variance
and Independent component analysis (ICA) [6], [7] that
finds spatial/temporal components that are as independent
as possible.

Principal component analysis (PCA) is a classical tech-
nique [8] that generates an orthonormal basis for the fMRI
data such that the first basis vector captures maximal vari-
ance, the second basis vector second most variance etc. PCA
is a completely data driven method and does not require any
information about the experimental design. This could be
useful in cases where there is insufficient information about
the stimulus i.e., in pharmaceutical experiments. PCA can
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also be used for preliminary analysis of the fMRI, for ex-
ample to find unexpected nuisance signals that could be cor-
rected for. It is usually possible to associate the top few PC
to some signals of interest, i.e., drift or stimulus.

But as noted by Mitra [9], due to the orthogonality con-
straint there is no guarantee that the PCs will correspond to
something useful. The stimulus could for example be dif-
fused over many PCs. Another problem with the use of PCs
in fMRI research is that they do not recognize the temporal
smoothness of the BOLD response.

This paper presents a smooth version of the PCA that
takes into account the temporal smoothness of the BOLD
response detected by the fMRI scanner. The main aspects of
our work are: 1) We use maximum likelihood (ML) frame-
work formulate the smooth PCA. This is an extension of
what was introduced by Tipping et al [10]. 2) Basis expan-
sion is used to impose the smoothness; Consequently the
computation is much simpler. 3) The ML framework allows
use of the AIC and the BIC criteria to control the smooth-
ness (select the number of basis functions) and to select the
number of principal components. Note that the AIC/BIC
criteria is used in a unusual way, i.e. to choose two tun-
ing parameters simultaneously. Another example of this is
[11]. Earlier work on this smoothness idea include a work
[12] by the second author that introduced Functional Data
Analysis [13] to the fMRI problem. More recent work in-
cludes Viviani et al. [14] who uses functional PCA. In func-
tional PCA regularization is used to constrain the PCs to be
smooth.

The paper is organized as follows. In Section 2 the for-
mulation of the conventional PCA via the SVD is discussed.
In Section 3 we discuss smooth PCA. Section 4 discusses
the problem of model selection and develops an AIC and
BIC criteria for our problem and finally in Section 5 con-
clusions are drawn.

2. PCA

Principal component analysis can be performed by applying
singular value decomposition (SVD) on the data. A SVD of
a mean-corrected data matrix Y is given by.

Y ≈ P∆QT (1)

where P is a T × r matrix of eigen-timeseries (principal
components) where PT P = Ir, and Q is a M × r matrix of
eigen-imageswhere QT Q = Ir , and ∆ = diag(

√
λ1, ...,

√
λr).

The P∆QT is a rank r approximation to Y in the Frobenius
norm.

3. SMOOTH PCA

The model for the Smooth PCA is given by

yv = µ + ΦBuv + εv, v = 1, ..., M, (2)

where Φ is a T × m matrix of pre-specified basis func-
tions, B is a m × r matrix, BT B = ∆B , ∆B is diagonal,
uv ∼ N(0, Ir) and εv ∼ N(0, σ2IT ). The model induces
a distribution on the observed data, i.e., yv ∼ N(µ, C),
where C = ΦBBT ΦT + σ2IT . The log-likelihood is given
by

l(Y ; θ) = −M

2
trace(C−1Sy) − M

2
log |C| (3)

where Sy = 1
M

∑M
v=1(yv − µ)(yv − µ)T is the sample co-

variance and θ is a vector of the parameters to be estimated,
which are σ2 and the elements of B. The likelihood is max-
imized when

B̂ = Kr(Dr − σ2Im)1/2 (4)

where Kr is the m× r matrix of unit eigenvectors of SΦ =
(ΦT Φ)−1/2ΦT SyΦ(ΦT Φ)−1/2 and Dr is a r × r diagonal
matrix that contains the corresponding eigenvalues. When
B = B̂ the maximum likelihood for σ2 is given by

σ̂2 =
trace(Sy) − trace(Dr)

T − r
(5)

Note that when m = T the columns of ΦB are proportional
to the columns of P , i.e., the principal components. The
columns of ΦB are referred to as the smooth principal com-
ponents or the smooth eigen-timeseries. To finish the model
fitting we need to choose the number of basis functions m
and the number of PCs r.

4. MODEL SELECTION

In this paper we explore the Akaike’s AIC criteria [15] and
the BIC criteria [16] for model selection. However, in this
case the usage is unusual because we need to choose two
tuning parameters, i.e., the number of basis functions and
the number of principal components. Therefore the AIC and
the BIC are two-dimensional functions. The AIC is given by

AIC(m, r) = −2l(Y ; θ̂) + 2dim(θ̂), (6)

where θ̂ is the maximum likelihood estimate of the parame-
ter vector θ, and dim(θ̂) is the number of free parameters
given by

dim(θ̂) = mr − r(r − 1)/2 + r + 1 (7)

The BIC has a log(T ) in place of the 2 in the second term
of the AIC. We select m and r that give the smallest AIC or
BIC value.

The AIC is an unbiased estimate of the mean Kullback-
Liebler distance between modelled density and the estimated
density. Note this is only true if the modelled density be-
longs to the same family of probability densities as the den-
sity that truly generated the data. But as pointed out in [17]
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Fig. 1. The stimulus signal

10 20 30 40 50 60

10

20

30

40

50

60

Fig. 2. An example of fMRI image slice.

page 22, the AIC performs well in practice given that the
modelled density and the true density are not grossly differ-
ent.

5. RESULTS

An fMRI experiment was performed where a human sub-
ject performed right hand sequential finger-thumb opposi-
tion according to a stimulus signal displayed on Fig. 1.
When the signal was high the subject performed finger-thumb
opposition when it was low the subject rested. This data set
is available on the AFNI homepage.

The data was obtained from a 3T MRI scanner with 2
sec TR. The original data consisted of T = 100 time points
and M = 4096 = 642 voxels. The conventional spatial
smoothing and temporal filtering were not done. A spatial
plot of the data that shows a cross-section of the brain at
time t = 50 is given on Fig. 2. The timeseries associated
with two voxels are displayed on Fig. 3.

Ninety seven voxels associated with the motor cortex
were selected for further processing by regressing a para-
metric model of the BOLD signal [18] to the voxel time-
series and select the most significant voxels (Bonferroni cor-
rected p-value=0.05). This approximately selects the voxels
associated with the motor cortex. If all the voxels were used
for analysis the model selection criteria picked the number
of basis functions r close to 100. This is because most of
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Fig. 3. Examples of fMRI timeseries
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Fig. 4. Left: The AIC statistics (Fourier basis) Right: The
AIC statistics (B-splines basis)

the voxels outside the motor cortex contain mostly noise.
Therefore the smoothness does not help.

The model 2 was fitted for two cases; firstly where Φ
was a basis of m Fourier functions and secondly where Φ
was a basis of m B-splines functions where the knot lo-
cations were uniformly chosen over [0, T − 1]. The AIC
was calculated for m = 0, ..., 100 and r < m. For the
Fourier basis the values that give minimum AIC are r = 9
and m = 49. The minimum BIC values are r = 7 and
m = 28. For the B-spline basis the values that give mini-
mum AIC are r = 8 and m = 69. The minimum BIC val-
ues are r = 6 and m = 43. The two-dimensional AIC plots
for the Fourier and the B-splines are given on Fig. 4. The
plots for the BIC are similar and not shown. Fig. 5 shows
the two first smooth eigen-timeseries corresponding the the
minimum BIC (r = 7,m = 28) for Fourier basis. The result
for B-splines is similar. We see that the first smooth eigen-
timeseries shows the effect of the stimulus signal. Com-
pared to the unsmooth PCA (m = 100) we get a signal that
looks much more like the expected BOLD response with
significant computational savings. Fig. 6 shows a spatial
plot on the smooth eigen-timeseries regressed on the fMRI
data. The highest activation are in the primary motor cortex
and the supplementary motor cortex. The second smooth
eigen-timeseries shows the effect of drift. The last 5 smooth
eigen-timeseries were not as easily interpreted and are not
shown.
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Fig. 5. Left: The first smooth eigen-timeseries and the stim-
ulus signal. Right: The second smooth eigen-timeseries
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Fig. 6. The first smooth eigen-timeseries regressed on the
fMRI data

6. CONCLUSION

We have presented a smooth PCA method that is able to
exploit the temporal smoothness of the BOLD signal by re-
stricting the fMRI data to a smooth subspace of basis func-
tions. The AIC and the BIC criteria were used to select two
tuning parameters; the number of basis functions and the
number of eigen-timeseries, and they show that a smooth
PCA is preferred. Work is underway extending this smooth-
ness idea to Independent component analysis (ICA).
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