
DSP SYSTEM DESIGN USING LABVIEW AND SIMULINK:

A COMPARATIVE EVALUATION

N. Kehtarnavaz and C. Gope

Department of Electrical Engineering, University of Texas at Dallas

ABSTRACT

LabVIEW and Simulink are two most widely used

graphical programming environments for designing digital

signal processing (DSP) systems. Unlike conventional text-

based programming languages, such as C and MATLAB,

graphical programming involves block-based code

development, allowing a more efficient mechanism to

build and analyze DSP systems. This paper presents a

comparative evaluation between LabVIEW and Simulink

in terms of a number of ease-of-use and functionality

criteria. Twenty students taking a senior undergraduate

DSP lab course were asked to perform the evaluation. The

students’ responses indicate that these two graphical

environments provide more or less the same design

features with LabVIEW having an edge over Simulink as

far as graphical display/visualization and DSP hardware

integration tools are concerned.

1. INTRODUCTION

LabVIEW and Simulink are two widely used graphical

code development environments which allow system-level

developers to perform rapid prototyping and testing.

Unlike text-based programming languages, such as C,

MATLAB, and Java, graphical programming involves

block-based code development and offers a more intuitive

approach to designing systems.

The comparative evaluation reported in this paper is

limited to the design of digital signal processing (DSP)

systems. Seven DSP system design problems were

assigned to senior undergraduate students as part of their

laboratory work in a DSP lab course entitled “DSP Design

Project” at the University of Texas at Dallas. The students

were asked to build and analyze the DSP systems in

LabVIEW as well as Simulink and compare their

respective merits and demerits based on a number of

evaluation criteria mentioned later in the paper.

Section 2 gives a brief overview of the LabVIEW and

Simulink graphical programming environments. Section 3

describes the DSP system design problems, while section 4

explains the criteria used for the comparative evaluation.

The results obtained appear in section 5, and the

conclusions are stated in section 6.

2. GRAPHICAL PROGRAMMING:

LABVIEW AND SIMULINK

A typical graphical code consists of various blocks

interconnected by wires. The blocks (which might consist

of other sub-blocks) are the processing units and the wires

are responsible for transferring data from one block to

another. Graphical programming is based on the concept of

data flow, in contrast to the sequential logic of most text-

based programming languages. This means that the

execution of a block or a graphical component is

dependent on the flow of data, or more specifically a block

executes when data are made available at all of its inputs,

and output data of the block are sent to all other connected

blocks. Data flow programming allows multiple blocks to

be run simultaneously since their executions are

determined by the flow of data and not by sequential lines

of code, which is the case in text-based programming.

The LabVIEW environment consists of two major

components: Front Panel (FP) and Block Diagram (BD).

An FP provides the graphical user interface while a BD

contains the building blocks of a system and resembles a

flowchart. LabVIEW systems are called Virtual

Instruments (VIs) and its FP appears as an instrument

panel consisting of various controls and displays. The

interested reader is referred to [1] for details on the

LabVIEW programming environment.

Similar to LabVIEW, Simulink offers a block-based

programming approach for simulation, design, and analysis

of dynamic systems. It provides an interactive graphical

environment together with a set of libraries to design and

simulate systems including DSP systems. Simulink blocks

are called Models and unlike LabVIEW, the code

implementation and input/output entities are not

distinguished explicitly in Simulink. Simulink is integrated

with MATLAB and hence can access the functionalities

II ­ 9851­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

and tools available within the MATLAB environment. The

interested reader is referred to [2] for details on the

Simulink programming environment.

3. DSP SYSTEM DESIGN LABS

This section briefly describes the DSP systems designed in

the LabVIEW and Simulink environments for the

evaluation reported later in the paper.

I. Analog-to-Digital (A/D) signal conversion: The goal

of this lab was to study the sampling and quantization

aspects of A/D signal conversion. In the first part, a

discrete sinusoid signal was generated and sampled at

various sampling frequencies to study aliasing effects.

In the second part, a 3-bit A/D converter was used to

represent an analog signal having values in the range

0-7. The system was required to display the

quantization error and the associated error histogram.

II. FIR/IIR filtering system design: This lab dealt with

the design and implementation of FIR/IIR filtering

systems using the filter design tools available within

the LabVIEW and Simulink environments. Given the

filter specifications, LabVIEW’s Digital Filter Design

(DFD) toolkit and Simulink’s Filter Design and

Analysis tool (FDATool) were used to realize the

filters. A low-pass FIR filter and a bandpass IIR filter

were designed and used to filter some input signals,

which were also generated within the environment.

III. Fixed-point and floating point arithmetic: The goal

of this lab was to study digital filtering as

implemented on fixed and floating point DSP

processors, in particular on the TI TMS320C6000

DSP processor [3]. The Simulink Fixed Point toolset

was used to simulate fixed-point arithmetic for the TI

TMS320C6000 DSP. At the time, LabVIEW did not

have any such capabilities and hence the fixed-point

arithmetic was performed using the Q-format

representation [3].

IV. TI DSP integration: LabVIEW and MATLAB, both

offer tools to visualize, verify, and validate TI DSP

code by integrating the graphical environment with

the TI Code Composer Studio (CCS) development

tool. Using the Real Time Data Exchange (RTDX)

feature of the TMS320C6x DSP, data can be

transferred to and from a DSK board connected to a

PC and be analyzed in the LabVIEW or MATLAB

environment in real-time. In this lab, the students

were asked to use the MATLAB’s Link for CCS tool

and LabVIEW’s DSP Test Integration tool to generate

signals in the MATLAB and LabVIEW environments,

respectively, and send signal samples to the C6416

and C6713 DSK boards connected to the PC, filter the

signals on the DSP, and send the filtered signals back

to the MATLAB or LabVIEW for display and

analysis. Although graphical programming with

LabVIEW allowed the DSP integration, Simulink did

not offer any such capabilities and hence here the

MATLAB text-based Link for the CCS tool was used.

V. Adaptive filtering: In this lab, the students were

asked to build an adaptive FIR filtering system using

the Least Mean Square (LMS) algorithm, to perform

adaptive noise cancellation for a signal corrupted by

time-varying noise. It should be noted that unlike

LabVIEW, Simulink already had a built-in LMS

block available with the Signal Processing blockset.

With the exception of the DSP integration lab, all the lab

assignments were required to be implemented completely

in software, including signal generation, processing, and

display.

4. EVALUATION CRITERIA

Eight criteria were used to evaluate and compare the

efficiency of the LabVIEW and Simulink graphical

programming environments. For each design problem, the

students were asked to rate the two environments on a

scale of 0 to 10, with 10 representing the highest rating or

score. A brief description of the evaluation criteria is

provided below:

Learning curve: This criterion reflected the

duration of getting familiar with the programming

environment. Most of the students had no or very little

exposure to graphical programming environments and

were expected to learn how to build systems in LabVIEW

and Simulink.

Ease of use: Assuming sufficient familiarity with

the environment, this measure of evaluation reflected the

ease of operating in the environment to develop and

modify code. In other words, the students were asked to

evaluate whether the environment offered easy to use

features for code development, reuse, and expansion.

Programming constructs: This criterion was

used to evaluate if sufficient programming constructs and

data structures were available in the graphical

programming environment, for example, while and for
loops, if else constructs, switch case constructs, ability to

make function calls, hierarchical code organization, etc.

Breadth of functionality: A major motivation

behind developing DSP systems via block-based graphical

programming is the ability to use off-the-shelf functional

blocks or components to build complex systems. Thus, this

criterion was used to evaluate the extent the programming

environment offered a rich set of plug-and-play building

blocks for DSP system design.

II ­ 986

Graphical User Interface (GUI): One of the

main attractions of graphical programming environments is

its GUI. Once a system is designed and implemented, its

GUI allows one to easily interact with the system to

visualize and analyze its behavior. The students were asked

to evaluate the GUI capabilities of the two programming

environments.

Debugging features: Code debugging usually

consumes a significant portion of the code development

process and efficient debugging tools are a key

requirement for any programming environment. This

criterion was used to evaluate the debugging features

available in the environment, in particular the graphical

debugging tools.

DSP Test Integration tools: This criterion

reflected whether it was easy to extend the environment to

integrate it with other software and hardware platforms.

Specifically, the students were asked to evaluate if it was

easy to interact with the TI Code Composer Studio tools

and hence integrate the graphical programming

environment with the TI C6416 and C6713 DSK boards.

Help resources: Graphical programming mostly

involves block or component based programming, wherein

functional building blocks are made available to system

developers. For example, for DSP system development,

tools such as Signal Generation, Filter Design, Fast Fourier

Transform, Power Spectral Density Estimation, Waveform

Measurements, etc., are readily available and it is essential

to have rich technical documentations and if required,

online help, be readily available to system developers. This

criterion reflected the richness of the help resources offered

by the environment.

5. COMPARISON RESULTS

This section presents the evaluation and comparison results

as related to the design problems described in section 3 and

the criteria mentioned in section 4. Twenty students were

asked to do the evaluation and comparison. On an average,

the students took 2 to 4 lab hours, depending upon the

complexity of the design problem, to finish each lab

exercise. Moreover, the criterion “Ease of use” reflects the

ease of implementing a system design in LabVIEW and

Simulink environments. Figure 1 shows the students’

scores for each of the criteria, averaged first over all the

design problems and then over all the students.

As can be seen from this figure, within the error

margins, LabVIEW and Simulink were rated almost

equally for most of the criteria. The most conspicuous

disparity between the ratings occurred for the Graphical

User Interface criterion. LabVIEW was preferred over

Simulink by a wide margin for its easy-to-use GUI

capabilities. This feature is an integral part of the

LabVIEW VI structure for code development. The other

two criteria for which LabVIEW was slightly preferred

over Simulink included its easier to use TI CCS integration

tools and richer help resources.

As an example, Figure 2 shows the graphical codes for

the filtering system (Lab II) for LabVIEW (Block

Diagram) and Simulink (Model) and Figure 3 shows the

Front Panel associated with the LabVIEW Block Diagram.

As displayed on this Front Panel, the parameters for the

input signals can be changed on the fly and their output

effects can be seen in real-time.

6. CONCLUSION

This paper has provided a comparative study between

LabVIEW and Simulink, two popular graphical

programming environments, in order to evaluate their

effectiveness in building DSP systems for educational

purposes. Based on the ratings of twenty students over

eight criteria, it is concluded that both of these graphical

programming environments can be used to shorten the

amount of code development time, with LabVIEW having

an edge with respect to GUI features and DSP integration

tools. The authors hope that this comparative study was

useful for the readers as well as the students who attended

the course, by enabling them to make a more informed

decision regarding the choice of programming environment

for DSP system design.

REFERENCES

[1] R. Bishop, Learning with LabVIEW 7 Express, New

Jersey: Prentice Hall, 2004.

[2] J. Dabney and T. Harman, Mastering Simulink,

Prentice Hall, September 2003.

[3] N. Kehtarnavaz, Real-Time Digital Signal

Processing Based on the TMS320C6000,

Elsevier/Newnes, 2004.

II ­ 987

Fig.1 - Comparison of LabVIEW and Simulink graphical programming environments.

Fig. 2 - Filtering system graphical codes in LabVIEW (left) and Simulink (right).

Fig. 3 - Filtering system Front Panel in LabVIEW.

II ­ 988

