
AN EFFICIENT DEBLOCKING FILTER WITH SELF-TRANSPOSING MEMORY
ARCHITECTURE FOR H.264/AVC

Mahdi Nazm Bojnordi, Omid Fatemi, Mahmoud Reza Hashemi

School of Electrical and Computer Engineering, University of Tehran, Tehran, IRAN.
Email: m.bojnordi@ece.ut.ac.ir, omid@fatemi.net, hashemi@comnete.com

ABSTRACT

One of the main reasons behind the superior efficiency of
the H.264/AVC video coding standard is the use of an in-
loop deblocking filter. Since the deblocking filter is
computation and data intensive, it has a profound impact on
the speed degradation of both encoding and decoding
processes. In this paper, we propose an efficient deblocking
filter architecture that can be used as an IP core either in the
dedicated or platform-based H.264/AVC codec systems.
Novel self-transposing memory unit is used in this paper to
alleviate switching between the horizontal and vertical
filtering modes. Moreover, to reduce the processing latency,
a two-stage pipelined architecture is designed for 1-D filter
that produces output data after 2 clock cycles. With a clock
of 100 MHz the proposed design is able to process a
1280×1024 (4:2:0) video at 25 frame/second. The proposed
architecture offers 33% to 56% performance improvement
compared to the existing state-of-the-art architectures.

1. INTRODUCTION

Most video coding techniques employ block-based
prediction, transformation, and quantization for encoding.
The use of these block-based tools, however, decreases
inter-block correlation in video frames and adds visible
blocking structures to the reconstructed frame, i.e. blocking
artifacts [1]- [3]. The newest video coding standard,
H.264/AVC [4], uses an in-loop adaptive filter to eliminate
the blocking artifacts. Among various coding tools of the
H.264/AVC codec, the in-loop deblocking filtering module
has a profound impact on the video visual quality
improvement [5]. However this improvement is achieved at
the cost of large amount of computation and memory
read/write operations. Therefore its computational
complexity significantly reduces the encoding/decoding
speed. The deblocking filter is described in detail in [6]. The
advantages of the in-loop deblocking over post filters are
also discussed in this reference. As shown in [1], the in-loop
deblocking filter reduces the bit-rate typically by 5%-10%
preserving the same objective video quality.

Recently, there are many proposed architectures for
H.264/AVC deblocking filter [7]- [11]. Generally, in order
to design an efficient real-time architecture for H.264/AVC
deblocking filter, two major issues should be addressed,
including 1-D filter processing latency and memory data
access.

In this paper, a high-performance low-cost deblocking
algorithm is proposed. Using an efficient memory
management and self-transposing memory architecture,
performance improvement of up to 56% is achieved,
compared to the existing state-of-the-art architectures. The
paper is organized as follows. An introduction to the
H.264/AVC deblocking algorithm is given in Section 2. In
Section 3, our proposed architecture is described.
Comparison and experimental results are presented in
Section 4. Finally, the paper ends with a conclusion Section
5.

Y
4 × 4
Block

U
V

Horizontal LOP

p3 p2 p1 p0 q0 q1 q2 q3

V
er

ti
ca

l
L

O
P

p3

p2

p1

p0

q0

q1

q2
q3

Fig. 1- Macroblock boundaries that should be filtered in each of
the three Y, U, and V components.

2. THE H.264/AVC DEBLOCKING ALGORITHM

According to the latest H.264/AVC Recommendation [4],
the deblocking filtering algorithm is defined as a conditional
process that has to be applied to vertical and horizontal
edges of all N×N blocks of each macroblock. For luminance
component (Y) N is selected equal to the size of the applied
I-transform, i.e. 4 or 8. For chrominance components (U and
V) N is selected equal to 4. Fig. 1 shows the boundaries
inside a macroblock that have to be filtered. The boundaries
indicated by bold lines should be filtered for both sizes of
applied transform. However, the edges indicated by doted

II 925142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

lines need to be filtered only if 4×4 transform is applied to
the desired macroblock.

In order to filter both vertical and horizontal block
boundaries, the algorithm processes data in the form of
horizontal and vertical line of pixels (LOP). Each LOP is
composed of 8 neighboring pixels between two 4×4 blocks.
Vertical and Horizontal LOPs are illustrated in Fig. 1. In
each macroblock, the horizontal LOPs are filtered first.
Then the vertical LOPs are filtered. In fact, the H.264/AVC
deblocking filtering is a procedure for updating the content
of LOPs using of a set of adaptive low-pass filters. For each
edge, the appropriate filter is selected from the filter bank
according to the boundary strength (bS), thresholds and
and content of the LOP. For each two neighboring blocks (p
and q), the bS factor is determined according to Table 1.
and thresholds depend on the quantization parameter (QP)
and some other syntax elements. Based on these parameters,
and for each LOP the algorithm determines whether or not
filtering is required. If all the following conditions are true,
the filter will be applied to the desired LOP:

01,01,00,0 qqppqpbS .

Table 1- Decision flow for determining the bS value.

Condition
bS

value
p or q is intra coded and boundary is a macroblock boundary 4
p or q is intra coded and boundary is not a macroblock
boundary

3

neither p or q is intra coded; p or q contain coded coefficients 2
neither p or q is intra coded; neither p or q contain coded
coefficients; p and q have different reference frames or a
different number of reference frames or different motion
vector values

1

neither p or q is intra coded; neither p or q contain coded
coefficients; p and q have same reference frame and identical
motion vectors

0

3. PROPOSED DEBLOCKING FILTER

ARCHITECTURE

H.264/AVC presents a macroblock-based algorithm for
deblocking the reconstructed frames. Implementing the
algorithm as described there needs big buffers and circuitry
for maintaining and transposing all the macroblock data. It
is resulted in both hardware complexity and performance
degradation. Dividing the video frames into smaller blocks
alleviates design complexity. This paper proposes an 8×8
block based architecture for deblocking filtering in
H.264/AVC. Processing data elements are chosen 8×8 box
of pixels (BOP) accommodating 8 vertical/horizontal LOPs.
Block diagram of the proposed architecture is shown in Fig.
2 (a). The architecture is composed of three major parts:
LOP-filter, Memory Unit, and Controller.
As illustrated in Fig. 2 (b), for each BOP we have to filter
four edges. v0 and h0 represent the boundaries indicated by
doted lines in Fig. 1. These edges are skipped during

deblocking filtering of luminance component if the 8×8
transform is chosen.

B0 B1

B2
B3

U0 U1

L0

L2

h0

h1

v0 v1

LOP-filter
Memory

Unit

Controller

BOP-filter

(a) (b)

32
-b

it
G

lo
ba

l B
us

Fig. 2- The BOP-filter architecture (a); Boundaries that should be
filtered in each BOP (b).

Three parts of the BOP-filter are described in the

following:

3.1. LOP-filter Architecture

The most complex part of the BOP-filter is the one-
dimensional LOP-filter. The maximum latency of the total
design is caused by this module. This module consumes two
clock cycles for preparing the filtered result of an 8-pixel
input. It can be used for both horizontal and vertical LOP
filtering modes. Inside this module the bS factor and
filtering thresholds are evaluated using the parameters
specified by the encoding/decoding parts. The determined
parameters and content of the LOP are used for updating the
new values for the LOP pixels. The updated LOP values
will be presented at the LOP-filter output after two clock
cycles. According to the H.264/AVC deblocking algorithm,
for each input 8-pixel LOP, at most six pixels should be
updated.

3.2. Self-Transposing Memory Architecture

As mentioned above the new deblocking scheme requires a
new data memory organization. BOP data are considered in
the form of pairs of pixels in the memory. Each two
neighboring pixels compose a 16-bit word in the memory.
Therefore, each BOP is mapped in the memory as depicted
in Fig. 3. According to this memory mapping scheme, the
proposed self-transposing memory architecture needs two
ports: one for data read and another for writing. Data words
of size 16-bit are accessed in this memory. Consequently,
reading or writing each LOP needs four clock cycles. The
BOP-filter employs this architecture beside the LOP-filter
module resulted to less implementation cost. The memory
structure is presented in more details in Fig. 4. This module
uses two banks of memory modules to accommodate two
BOPs inside. Each bank is composed of two odd and even
8-bit dual-port SRAMs.

II 926

8x8 Block32x16 Memory

P8 P9 P10 P11

P4 P5 P6 P7

P12 P13 P14 P15

P16 P17 P18 P19

P20 P21 P22 P23

P24 P25 P26 P27

P28 P29 P30 P31

P3, L P3, R
P0 P1 P2 P3

Pair of Pixels

P0

P1

P2

P31

P4

P3

Fig. 3- BOP memory map.

P0, L

P1, L

P2, L

P27, L

P3, L

P8, L

P4, L

P5, L

P6, L

P31, L

P7, L

P12, L

P0, R

P1, R

P2, R

P27, R

P3, R

P8, R

P4, R

P5, R

P6, R

P31, R

P7, R

P12, R

Out Mux

16-bit read data

16-bit write data

L R

Le
ft

B
an

k

R
ig

ht
 B

an
k

Fig. 4- Self-transposing memory architecture.

Write

Write
Address

Read
Address

Out Mux Select

Read Address
to Mem Banks

Write Address
to Mem Banks

Write to odd RAMs

Write to even RAMs

Fig. 5- Simple controller architecture for self-transposing memory.

The 16-bit input data is written in the form of two right

and left 8-bit data in the right and left banks, respectively. In
other words, no transposition occurs during writing a 16-bit
data in the memory banks. However, reading mechanism is
modified in such a way to capture transposed LOP from the
output data port. A simple controller is designed that
controls writing and reading data to/from the memory
banks. Control signals to the memory banks are generated
simply by reordering the input write and read address lines.
Fig. 5 shows the controller structure for the proposed self-
transposing memory architecture.

Common read and write addresses are generated for all
the SRAM modules. Memory write operation is controlled
by the write signal and input write address. If the address
value points to the pixels in an odd row, the input data
should be written in the odd RAM modules of both left and
right banks. Otherwise the input data has to be written in the
even RAM modules. Reading odd or even columns of the
BOP is controlled by the value of the read address.

P0 P1 P2 P3

Mux1

Mux2

LOP-Filter

L

Memory Unit

64

Mux0

32

B
O

P
 C

on
tr

ol
le

r

32

Fig. 6- BOP internal dataflow diagram.

3.3 BOP-filter Controller

The BOP controller module is responsible for controlling all
the functions of the BOP-filter module. The new BOP is
read from the global data bus at the horizontal filtering
mode. Assuming a typical 32-bit system bus, every two
clock cycles the 64-bit data is fed to the LOP-filter. In the
horizontal filtering mode, newly read data from the bus and
the previously stored data in the local memory are merged
and fed to the LOP-filter. The updated LOP will be stored in
the local memory. Once all the horizontal LOPs belonging
to the desired BOP are read and filtered, BOP-filter goes
into the vertical filtering mode. Operating at the vertical
filtering mode, data are read from self-transposing memory
and merged with the previously stored data to pass to the
LOP-filter. The output data are generated during the
filtering operation and can be stored in the destination frame
memory. In fact our strategy is based on the delayed data
write back mechanism. After filtering each BOP the grey
data blocks that are shown in Fig. 2 (a) will be written back
into the memory. In other words, left and right nibbles of
each LOP should be processed with their left- and right-
hand side nibbles. Therefore, each nibble can be written
back to the memory if its two filtering processes are
performed. Fig. 6 shows internal data flow of the proposed
BOP-filter. As shown in this figure, input data to the LOP-
filter is selected from the newly loaded data from the global
bus and previously stored blocks in the memory (named L
bank). According to the selected edge for filtering in the

II 927

4×4 mode, Mux0 selects between the left and right half of
the newly read LOP. Output of this multiplexer is
concatenated to the data comes from L bank and composes a
LOP for filtering the 4×4 mode. If the filtering mode is 8×8,
the newly read LOP should be passed to the LOP-filter.
Mux1 selects the proper data for according to applied
transform. Finally, distinguishing between the horizontal
and vertical filtering is performed using Mux2. The 32-bit
right half of LOP-filter result is stored in the L bank to be
used later. It is guaranteed with that the updated LOP be
ready after at most four clock cycles either if the transform
size of 8 or 4 chosen. After filtering v1 the LOPs are stored
in the transposing memory. Once all the horizontal LOPs
are filtered and stored in the transposing memory, BOP
transpose should be processed for filtering horizontal edges.
This memory unit is designed to transpose the BOP with no
need to extra clock cycles. The BOP can be transposed only
by writing/reading to/from this memory unit.

Table 2- Comparison between the proposed deblocking filters and
other architectures.

 [11]
A

 [11]
B

 [11]
C

 [11] D [10] proposed

Gate # (K) 18.91 18.91 18.91 20.66 9.35 8.24

Max
Cycles/MB

878 814 782 614 566 384

4. COMPARISON AND EXPERIMENTAL RESULTS

The proposed architecture is implemented with Verilog
synthesized by a standard 0.35µ CMOS technology library.
Synthesis results indicate that delay of the critical path is
8.63 ns. Therefore, the proposed deblocking filter can work
with a clock frequency of 100MHz. At this clock rate, the
proposed architecture can process at most 50 Mega-LOPs
per second. In terms of BOPs, the architecture is able to
perform deblocking of each BOP during 64 clock cycles.
Considering the clock frequency of 100MHz it can perform
deblocking of 1600 Kilo-BOPs per second. Four different
deblocking architectures are proposed in [11]. The
architectures were designed to support macroblock based
filtering in two basic and advanced modes According to the
memory modules used in each of them, four architectures
are categorized as (A) basic + single port SRAM, (B)
advanced + dual port SRAM, (C) basic + dual port SRAM,
and (D) advanced with dual register array + dual port
SRAM. Another architecture with a 2-D memory
organization is also proposed in [10]. Results of comparison
with these architectures are summarized in Table 2. The
number of gates provided in this table excludes SRAM
modules. As illustrated, the proposed architecture offers
33% to 56% performance improvement compared to the
existing architectures.

In contrast to the other existing implementations for
deblocking filtering, the proposed architecture uses RAM

banks that are less complex than the register files and two-
dimensional memory used in [10]. Also we have used an
interleaved memory access for reading and writing data on
the global bus. It utilizes only 50% of the bus operation
during the filtering process.

5. CONCLUSIONS

In this paper, a cost efficient deblocking architecture is
proposed that can be used in both dedicated fully pipelined
architectures and platform based H.264/AVC codecs. Using
a novel self-transposing memory architecture and extra
memory banks for maintaining previously filtered blocks,
memory data accesses are optimized. Also the design
supports filtering of both horizontal and vertical edges with
no modification in the filtering mechanism

6. ACKNOWLEDGMENT

The authors wish to express their gratitude to Iran
Telecommunication Research Center (ITRC) for their
financial support during the course of this research.

7. REFERENCES

[1] T. Wiegand, G.J. Sullivan, G. Bjontegaard, A. Luthra, "Overview of
the H.264/AVC Video Coding Standard," IEEE Trans. on Circuits and
Systems for Video Technology, vol. 13, no.7, pp. 560-576, Jul. 2003.
[2] S. D. Kim, J. Yi, H.M. Kim, J.B. Ra, "A Deblocking Filter with Two
Separate Modes in Block-Based Video Coding," IEEE Trans. on Circuits
and Systems for Video Technology, vol. 9, no. 1, pp. 156- 160, Feb. 1999.
[3] R. Schäfer, T. Wiegand, H. Schwarz, "The Emerging H.264 /AVC
Standard," EBU Technical Review, Jan. 2003.
[4] "Advanced video coding for generic audiovisual services," ITU-T
Rec. H.264/ISO/IEC 14496-10, Mar. 2005.
[5] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F.
Pereira, T. Stockhammer, T. Wedi, "Video coding with H.264/AVC: tools,
performance, and complexity," IEEE Circuits and Systems Magazine, vol.
4, iss. 1, 2004.
[6] P. List, A. Joch, J. Lainema, G. Bjontegaard, M. Karczewicz,
"Adaptive deblocking filter," IEEE Trans. Circuits Systems for.Video
Technology., vol. 13, pp. 614- 619, July 2003.
[7] B. Sheng, W. Gao, D. Wu, "An implemented architecture of
deblocking filter for H.264/AVC," Proc. of Image Processing (ICIP), vol.
1, pp. 665 - 668, Oct. 2004.
[8] M. Sima, Y. Zhou, W. Zhang, "An Efficient Architecture for Adaptive
Deblocking Filter of H.264/AVC Video Coding," IEEE Trans. on
Consumer Electronics, vol. 50, no. 1, pp. 292- 296, Feb. 2004.
[9] T. Liu, W. Lee, T. Lin, C. Lee, "A Memory-Efficient Deblocking
Filter for H.264/Avc Video Coding," IEEE International Symposium on
Circuits and Systems, pp. 2140 - 2143, 2005.
[10] L. Li, S. Goto, T. Ikenaga, "An Efficient Deblocking Filter
Architecture with 2-Dimensional Parallel Memory for H.264/AVC", Proc.
of Asia South Pacific Design Automation Conference (ASP-DAC), pp. 623-
625, Jan., China, 2005.
[11] Y.W. Huang, T.W. Chen, B.Y. Hsieh, T.C. Wang, T.H. Chang, L.G.
Chen, "Architecture Design for De-blocking Filter in H.264/JVT/AVC",
Proc. of IEEE ICME 2003, vol. 1, pp. 693-696, Jul. 2003.

II 928

