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ABSTRACT 

 
One of the main reasons behind the superior efficiency of 
the H.264/AVC video coding standard is the use of an in-
loop deblocking filter. Since the deblocking filter is 
computation and data intensive, it has a profound impact on 
the speed degradation of both encoding and decoding 
processes. In this paper, we propose an efficient deblocking 
filter architecture that can be used as an IP core either in the 
dedicated or platform-based H.264/AVC codec systems. 
Novel self-transposing memory unit is used in this paper to 
alleviate switching between the horizontal and vertical 
filtering modes. Moreover, to reduce the processing latency, 
a two-stage pipelined architecture is designed for 1-D filter 
that produces output data after 2 clock cycles. With a clock 
of 100 MHz the proposed design is able to process a 
1280×1024 (4:2:0) video at 25 frame/second. The proposed 
architecture offers 33% to 56% performance improvement 
compared to the existing state-of-the-art architectures. 

 

1. INTRODUCTION 
 
Most video coding techniques employ block-based 
prediction, transformation, and quantization for encoding. 
The use of these block-based tools, however, decreases 
inter-block correlation in video frames and adds visible 
blocking structures to the reconstructed frame, i.e. blocking 
artifacts  [1]- [3]. The newest video coding standard, 
H.264/AVC  [4], uses an in-loop adaptive filter to eliminate 
the blocking artifacts. Among various coding tools of the 
H.264/AVC codec, the in-loop deblocking filtering module 
has a profound impact on the video visual quality 
improvement  [5]. However this improvement is achieved at 
the cost of large amount of computation and memory 
read/write operations. Therefore its computational 
complexity significantly reduces the encoding/decoding 
speed. The deblocking filter is described in detail in  [6]. The 
advantages of the in-loop deblocking over post filters are 
also discussed in this reference. As shown in  [1], the in-loop 
deblocking filter reduces the bit-rate typically by 5%-10% 
preserving the same objective video quality. 

Recently, there are many proposed architectures for 
H.264/AVC deblocking filter  [7]- [11]. Generally, in order 
to design an efficient real-time architecture for H.264/AVC 
deblocking filter, two major issues should be addressed, 
including 1-D filter processing latency and memory data 
access. 

In this paper, a high-performance low-cost deblocking 
algorithm is proposed. Using an efficient memory 
management and self-transposing memory architecture, 
performance improvement of up to 56% is achieved, 
compared to the existing state-of-the-art architectures. The 
paper is organized as follows. An introduction to the 
H.264/AVC deblocking algorithm is given in Section 2. In 
Section 3, our proposed architecture is described. 
Comparison and experimental results are presented in 
Section 4. Finally, the paper ends with a conclusion Section 
5. 
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Fig. 1- Macroblock boundaries that should be filtered in each of 
the three Y, U, and V components. 

 
2. THE H.264/AVC DEBLOCKING ALGORITHM 

 
According to the latest H.264/AVC Recommendation  [4], 
the deblocking filtering algorithm is defined as a conditional 
process that has to be applied to vertical and horizontal 
edges of all N×N blocks of each macroblock. For luminance 
component (Y) N is selected equal to the size of the applied 
I-transform, i.e. 4 or 8. For chrominance components (U and 
V) N is selected equal to 4. Fig. 1 shows the boundaries 
inside a macroblock that have to be filtered. The boundaries 
indicated by bold lines should be filtered for both sizes of 
applied transform. However, the edges indicated by doted 

II  925142440469X/06/$20.00 ©2006 IEEE ICASSP 2006



lines need to be filtered only if 4×4 transform is applied to 
the desired macroblock. 

In order to filter both vertical and horizontal block 
boundaries, the algorithm processes data in the form of 
horizontal and vertical line of pixels (LOP). Each LOP is 
composed of 8 neighboring pixels between two 4×4 blocks. 
Vertical and Horizontal LOPs are illustrated in Fig. 1. In 
each macroblock, the horizontal LOPs are filtered first. 
Then the vertical LOPs are filtered. In fact, the H.264/AVC 
deblocking filtering is a procedure for updating the content 
of LOPs using of a set of adaptive low-pass filters. For each 
edge, the appropriate filter is selected from the filter bank 
according to the boundary strength (bS), thresholds  and  
and content of the LOP. For each two neighboring blocks (p 
and q), the bS factor is determined according to Table 1.  
and  thresholds depend on the quantization parameter (QP) 
and some other syntax elements. Based on these parameters, 
and for each LOP the algorithm determines whether or not 
filtering is required. If all the following conditions are true, 
the filter will be applied to the desired LOP: 

01,01,00,0 qqppqpbS . 
 

Table 1- Decision flow for determining the bS value. 

Condition 
bS 

value 
p or q is intra coded and boundary is a macroblock boundary 4 
p or q is intra coded and boundary is not a macroblock 
boundary 

3 

neither p or q is intra coded; p or q contain coded coefficients 2 
neither p or q is intra coded; neither p or q contain coded 
coefficients; p and q have different reference frames or a 
different number of reference frames or different motion 
vector values 

1 

neither p or q is intra coded; neither p or q contain coded 
coefficients; p and q have same reference frame and identical 
motion vectors 

0 

 
3. PROPOSED DEBLOCKING FILTER 

ARCHITECTURE 
 
H.264/AVC presents a macroblock-based algorithm for 
deblocking the reconstructed frames. Implementing the 
algorithm as described there needs big buffers and circuitry 
for maintaining and transposing all the macroblock data. It 
is resulted in both hardware complexity and performance 
degradation. Dividing the video frames into smaller blocks 
alleviates design complexity. This paper proposes an 8×8 
block based architecture for deblocking filtering in 
H.264/AVC. Processing data elements are chosen 8×8 box 
of pixels (BOP) accommodating 8 vertical/horizontal LOPs. 
Block diagram of the proposed architecture is shown in Fig. 
2 (a). The architecture is composed of three major parts: 
LOP-filter, Memory Unit, and Controller. 
As illustrated in Fig. 2 (b), for each BOP we have to filter 
four edges. v0 and h0 represent the boundaries indicated by 
doted lines in Fig. 1. These edges are skipped during 

deblocking filtering of luminance component if the 8×8 
transform is chosen. 
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Fig. 2- The BOP-filter architecture (a); Boundaries that should be 
filtered in each BOP (b). 

 
Three parts of the BOP-filter are described in the 

following: 
 
3.1. LOP-filter Architecture 
 
The most complex part of the BOP-filter is the one-
dimensional LOP-filter. The maximum latency of the total 
design is caused by this module. This module consumes two 
clock cycles for preparing the filtered result of an 8-pixel 
input. It can be used for both horizontal and vertical LOP 
filtering modes. Inside this module the bS factor and 
filtering thresholds are evaluated using the parameters 
specified by the encoding/decoding parts. The determined 
parameters and content of the LOP are used for updating the 
new values for the LOP pixels. The updated LOP values 
will be presented at the LOP-filter output after two clock 
cycles. According to the H.264/AVC deblocking algorithm, 
for each input 8-pixel LOP, at most six pixels should be 
updated. 
 
3.2. Self-Transposing Memory Architecture 
 
As mentioned above the new deblocking scheme requires a 
new data memory organization. BOP data are considered in 
the form of pairs of pixels in the memory. Each two 
neighboring pixels compose a 16-bit word in the memory. 
Therefore, each BOP is mapped in the memory as depicted 
in Fig. 3. According to this memory mapping scheme, the 
proposed self-transposing memory architecture needs two 
ports: one for data read and another for writing. Data words 
of size 16-bit are accessed in this memory. Consequently, 
reading or writing each LOP needs four clock cycles. The 
BOP-filter employs this architecture beside the LOP-filter 
module resulted to less implementation cost. The memory 
structure is presented in more details in Fig. 4. This module 
uses two banks of memory modules to accommodate two 
BOPs inside. Each bank is composed of two odd and even 
8-bit dual-port SRAMs. 
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Fig. 3- BOP memory map. 
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Fig. 4- Self-transposing memory architecture. 

 

Write

Write
Address

Read
Address

Out Mux Select

Read Address
to Mem Banks

Write Address
to Mem Banks

Write to odd RAMs

Write to even RAMs

 
Fig. 5- Simple controller architecture for self-transposing memory. 

 
The 16-bit input data is written in the form of two right 

and left 8-bit data in the right and left banks, respectively. In 
other words, no transposition occurs during writing a 16-bit 
data in the memory banks. However, reading mechanism is 
modified in such a way to capture transposed LOP from the 
output data port. A simple controller is designed that 
controls writing and reading data to/from the memory 
banks. Control signals to the memory banks are generated 
simply by reordering the input write and read address lines. 
Fig. 5 shows the controller structure for the proposed self-
transposing memory architecture. 

Common read and write addresses are generated for all 
the SRAM modules. Memory write operation is controlled 
by the write signal and input write address. If the address 
value points to the pixels in an odd row, the input data 
should be written in the odd RAM modules of both left and 
right banks. Otherwise the input data has to be written in the 
even RAM modules. Reading odd or even columns of the 
BOP is controlled by the value of the read address. 
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Fig. 6- BOP internal dataflow diagram. 

 
3.3 BOP-filter Controller 
 
The BOP controller module is responsible for controlling all 
the functions of the BOP-filter module. The new BOP is 
read from the global data bus at the horizontal filtering 
mode. Assuming a typical 32-bit system bus, every two 
clock cycles the 64-bit data is fed to the LOP-filter. In the 
horizontal filtering mode, newly read data from the bus and 
the previously stored data in the local memory are merged 
and fed to the LOP-filter. The updated LOP will be stored in 
the local memory. Once all the horizontal LOPs belonging 
to the desired BOP are read and filtered, BOP-filter goes 
into the vertical filtering mode. Operating at the vertical 
filtering mode, data are read from self-transposing memory 
and merged with the previously stored data to pass to the 
LOP-filter. The output data are generated during the 
filtering operation and can be stored in the destination frame 
memory. In fact our strategy is based on the delayed data 
write back mechanism. After filtering each BOP the grey 
data blocks that are shown in Fig. 2 (a) will be written back 
into the memory. In other words, left and right nibbles of 
each LOP should be processed with their left- and right-
hand side nibbles. Therefore, each nibble can be written 
back to the memory if its two filtering processes are 
performed. Fig. 6 shows internal data flow of the proposed 
BOP-filter. As shown in this figure, input data to the LOP-
filter is selected from the newly loaded data from the global 
bus and previously stored blocks in the memory (named L 
bank). According to the selected edge for filtering in the 
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4×4 mode, Mux0 selects between the left and right half of 
the newly read LOP. Output of this multiplexer is 
concatenated to the data comes from L bank and composes a 
LOP for filtering the 4×4 mode. If the filtering mode is 8×8, 
the newly read LOP should be passed to the LOP-filter. 
Mux1 selects the proper data for according to applied 
transform. Finally, distinguishing between the horizontal 
and vertical filtering is performed using Mux2. The 32-bit 
right half of LOP-filter result is stored in the L bank to be 
used later. It is guaranteed with that the updated LOP be 
ready after at most four clock cycles either if the transform 
size of 8 or 4 chosen. After filtering v1 the LOPs are stored 
in the transposing memory. Once all the horizontal LOPs 
are filtered and stored in the transposing memory, BOP 
transpose should be processed for filtering horizontal edges. 
This memory unit is designed to transpose the BOP with no 
need to extra clock cycles. The BOP can be transposed only 
by writing/reading to/from this memory unit. 
 

Table 2- Comparison between the proposed deblocking filters and 
other architectures. 

  [11] 
A 

 [11] 
B 

 [11] 
C 

 [11] D  [10] proposed 

Gate # (K) 18.91 18.91 18.91 20.66 9.35 8.24 

Max 
Cycles/MB 

878 814 782 614 566 384 

 
4. COMPARISON AND EXPERIMENTAL RESULTS 

 
The proposed architecture is implemented with Verilog 
synthesized by a standard 0.35µ CMOS technology library. 
Synthesis results indicate that delay of the critical path is 
8.63 ns. Therefore, the proposed deblocking filter can work 
with a clock frequency of 100MHz. At this clock rate, the 
proposed architecture can process at most 50 Mega-LOPs 
per second. In terms of BOPs, the architecture is able to 
perform deblocking of each BOP during 64 clock cycles. 
Considering the clock frequency of 100MHz it can perform 
deblocking of 1600 Kilo-BOPs per second. Four different 
deblocking architectures are proposed in  [11]. The 
architectures were designed to support macroblock based 
filtering in two basic and advanced modes According to the 
memory modules used in each of them, four architectures 
are categorized as (A) basic + single port SRAM, (B) 
advanced + dual port SRAM, (C) basic + dual port SRAM, 
and (D) advanced with dual register array + dual port 
SRAM. Another architecture with a 2-D memory 
organization is also proposed in  [10]. Results of comparison 
with these architectures are summarized in Table 2. The 
number of gates provided in this table excludes SRAM 
modules. As illustrated, the proposed architecture offers 
33% to 56% performance improvement compared to the 
existing architectures. 

In contrast to the other existing implementations for 
deblocking filtering, the proposed architecture uses RAM 

banks that are less complex than the register files and two-
dimensional memory used in  [10]. Also we have used an 
interleaved memory access for reading and writing data on 
the global bus. It utilizes only 50% of the bus operation 
during the filtering process. 
 

5. CONCLUSIONS 
 
In this paper, a cost efficient deblocking architecture is 
proposed that can be used in both dedicated fully pipelined 
architectures and platform based H.264/AVC codecs. Using 
a novel self-transposing memory architecture and extra 
memory banks for maintaining previously filtered blocks, 
memory data accesses are optimized. Also the design 
supports filtering of both horizontal and vertical edges with 
no modification in the filtering mechanism 
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