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ABSTRACT

In many multi-media applications DCT based digital video cod-
ing standards like MPEG are widely used. In certain applications
like video database browsing, picture in picture etc., the video is
required to be downscaled before transmitting it over the network.
The naive spatial domain approach for video downscaling requires
video to be fully decompressed. It requires huge computation time.
The computation time greatly be reduced if all the computations
are performed in the DCT domain. In this paper, we propose a fast
DCT domain based video downscaling system. To reduce compu-
tational requirement, we have proposed efficient algorithms for in-
verse motion compensation. The sparseness of the DCT blocks are
also considered for further reduction of computations. We found
that our proposed system is 36 times faster than the spatial domain
method and PSNR wise produces better quality downscaled video.

Index Terms– Discrete cosine transform (DCT), MPEG,
video downscaling, inverse motion compensation, motion-vector
refinement.

1. INTRODUCTION

With the advancement of multi-media based applications, video
data is available in digital format. The video compression stan-
dards such as MPEG are used to efficiently store and transmit the
digital video over the network. The MPEG compression standards
use the Discrete Cosine Transform (DCT) and Motion Compen-
sation (MC) to achieve the higher degree of compression. The
MPEG video can be processed either in spatial domain or in DCT
domain. In spatial domain approaches, the video is first fully de-
compressed, video frames are processed in spatial or pixel domain
and then again reencoded as per MPEG video standards. In the
DCT domain methods, the video is partially uncompressed (only
VLC and Huffman decoded), the DCT blocks of the video are pro-
cessed and then again the processed DCT blocks are VLC and
Huffman encoded. The advantage of DCT domain processing is
that it requires less computation and the sparseness of the DCT
blocks can also be utilized.

The basic building blocks of a DCT based video downscaling
system are intra frame downscaling, inverse motion compensation,
and motion estimation and compensation for downscaled frames.
There are many algorithms reported in the literature for intra frame
downscaling in the DCT domain. Dugad and Ahuja [1] suggested
an excellent scheme to perform intra frame downscaling. Their
algorithm requires 1.25 multiplication and 1.25 addition per pixel
of the original frame.

The inverse motion compensation (IMC) operation is required
to convert motion compensated inter frames to intra frames for
video manipulation. Several works [2],[3], [4], [5] are reported
in the literature to perform IMC in DCT domain. Merhav[3] has
proposed an excellent scheme to perform IMC in the DCT do-
main on 8×8 block basis. He has proposed a computation model
based on factorization of the DCT and IDCT matrices. In [5], the
shared information in a macroblock is used to speed up the pro-
cess of IMC. It shows about 19% and 13.5% improvement over
the method presented in [3], [4] respectively. We have extended
the idea given in [3] to perform IMC and used the shared infor-
mation present in a macroblock. We would refer this technique as
macroblock wise inverse motion compensation (MBIMC). As the
details of this algorithm is communicated elsewhere, we briefly
discuss the algorithm for the sake of completeness of this paper.
It is found that this technique provided 27% improvement over
the method presented in [3]. In this work, we have tried to fur-
ther reduce the computations of MBIMC scheme by utilizing the
sparseness of DCT blocks. It results in 70% improvement (in the
number of operations required) in MBIMC scheme.

The motion estimation in DCT domain is very expensive. Many
researchers have suggested a different scheme to perform motion
estimation which uses the motion information present in the orig-
inal video to compute a good estimate of the motion vectors for
downscaled video frames. These schemes are known as motion
vector re-estimation techniques. Shen [6] has presented an adap-
tive motion vector resampling (AMVR) technique. The AMVR
technique takes the weighted average of the motion vectors of the
four adjacent macroblocks in the original video stream and com-
putes the motion vector for macroblock in the downscaled video.
This technique tries to align the new motion vector towards the
worst predicted macroblock so that the prediction error is reduced
for downscaled macroblock. We have used the MBIMC scheme to
perform motion compensation for downscaled video in DCT do-
main.

Our proposed DCT domain based video downscaling system
is integration of above mentioned techniques. The proposed sys-
tem is compared with spatial and hybrid domain [6] methods. It
is shown in the results that our proposed system is 36 times faster
than spatial domain method and PSNR wise produces better out-
put than spatial and hybrid system. In next section (section II), we
briefly describe the MBIMC scheme followed by further reduc-
tion of computations with a proposed modification. Our proposed
downscaling system is discussed in section III. Subsequently, re-
sults are presented and discussed in section IV.
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Fig. 1. Macroblockwise inverse motion compensation (MBIMC)

2. MACROBLOCKWISE INVERSE MOTION
COMPENSATION (MBIMC)

As stated in the name, this technique performs the IMC on mac-
roblock basis. It is shown in Fig.1, a predicted macroblock may
intersect at the most with nine 8× 8 DCT blocks. In general, the
predicted macroblock M′ will not align with any 8×8 DCT block
boundaries in the reference frame but it will overlap with nine 8×8
DCT blocks. In Fig. 1, r and c represent the start location of a pre-
dicted macroblock. If x1,x2,x3,x4,x5,x6,x7, x8,x9 are the adjacent
blocks in spatial domain then a 16× 16 block from the 24× 24
block can be extracted using the Eq. (1).

m′ = cr

[
x1 x2 x3
x4 x5 x6
x7 x8 x9

]
cc (1)

Where m′ is the predicted macroblock in spatial domain and
cr is a 16× 24 matrix, cc is 24× 16 matrix. These matrices are
different for different values of r and c (refer Fig. 1). The structure
of cr matrix is given below.

cr(16,24) =

⎡
⎢⎢⎣

0 0 .. 0
0 0 .. 0
.. .. ..
.. .. ..
0 0 .. 0

(r−1)column

1 0 .. 0
0 1 .. 0
.. .. ..
.. .. ..
0 0 .. 1

16column

0 0 .. 0
0 0 .. 0
.. .. ..
.. .. ..
0 0 .. 0

(8−r+1)column

⎤
⎥⎥⎦

Similarly cc matrices can also be derived. These matrices
work as row and column selector matrices.

Since we have DCT blocks X1,X2,X3,X4,X5,X6,X7,X8, X9
and we have to extract macroblock M′ from these nine DCT blocks.
The macroblock M′ is a group of four adjacent 8×8 DCT blocks.
To achieve this, Eq. (1) is expressed in the DCT domain as shown
in Eq.(2).

In Eq.(2), ′0′ represents a 8× 8 matrix of zeros and S8 repre-
sents a 8-point type-II DCT transformation matrix. Transpose of
a matrix A is represented by At. The matrix multiplication inside
the curly braces results in a 16× 16 matrix, which represent the

spatial domain block. The premultiplication of
(

S8 0
0 S8

)
and post

multiplication of
(

St
8 0

0 St
8

)
results in a 16×16 macroblock contain-

ing four 8×8 DCT blocks. Interestingly, The S8 can be factorized
as shown in Eq. 5.

M′ =
(

S8 0
0 S8

)⎧⎪⎨
⎪⎩cr

⎡
⎢⎣ St8 0 0

0 St8 0

0 0 St8

⎤
⎥⎦

⎡
⎣ X1 X2 X3

X4 X5 X6
X7 X8 X9

⎤
⎦

⎡
⎣ S8 0 0

0 S8 0
0 0 S8

⎤
⎦cc

⎫⎪⎬
⎪⎭

(
St8 0

0 St8

)
(2)

St =

⎡
⎢⎣(MA1A2A3)t 0 0

0 (MA1A2A3)t 0

0 0 (MA1A2A3)t

⎤
⎥⎦

︸ ︷︷ ︸
Qt

⎡
⎢⎣

Bt
2 0 0

0 Bt
2 0

0 0 Bt
2

⎤
⎥⎦

︸ ︷︷ ︸
B2t

⎡
⎢⎣

Bt
1 0 0

0 Bt
1 0

0 0 Bt
1

⎤
⎥⎦

︸ ︷︷ ︸
B1t

[
Pt 0 0
0 Pt 0
0 0 Pt

]
︸ ︷︷ ︸

Pt

[
Dt 0 0
0 Dt 0
0 0 Dt

]
︸ ︷︷ ︸

Dt

(3)

Similarly, equation for S is factorized also.
Using the above mentioned notations, the Eq. (2) can be written as given below.

M′ =
(

S8 0
0 S8

)⎧⎨
⎩crQtB2tB1tPtDt

⎡
⎣ X1 X2 X3

X4 X5 X6
X7 X8 X9

⎤
⎦DPB1B2Qcc

⎫⎬
⎭

(
St8 0

0 St8

)
(4)

Table 1. Multiplication complexities of Ji matrices with 24× 24
sparse DCT matrix

Matrix Computations/column
J1 2m + 24a
J2 3m + 25a
J3 3m + 26a
J4 3m + 26a
J5 3m + 28a
J6 3m + 26a
J7 3m + 26a
J8 3m + 25a

S8 = DPB1B2MA1A2A3 (5)

where D is a diagonal matrix, P is a permutation matrix, B1,B2,
A1,A2,A3 are sparse matrices of 1, 0 and -1. M is a sparse matrix
of real numbers. Please refer the work reported in [3] for further
details.

Let us define S and St as shown below.

S =
[

S8 0 0
0 S8 0
0 0 S8

]
and St =

[
St8 0 0

0 St8 0

0 0 St8

]
Then St can be written as shown in Eq.(3) using the factoriza-

tion shown in Eq. (5).
In Eq. (4), the matrix multiplication by P(Pt) and D(Dt) ma-

trices can be ignored by obvious reasons given in [3]. If we rep-
resent Jr = crQt and Kc = Qcc. In Eq. 4, inside the curly braces,
there are two matrix multiplication of B1/Bt

1, two matrix multipli-
cation of B2/Bt

2 and single multiplication of Jr and Kc matrices.
Finally four 2D DCT operations are performed over the resulting
matrix. it requires 3.43 multiplications and 20.5 addition oper-
ations per pixel of the input frame to perform IMC in the DCT
domain. These required computations can further be reduced by
exploiting the sparseness of the DCT blocks as described in next
section.

2.1. Modification over MBIMC

In the proposed modification, we will consider that the 8×8 DCT
blocks are sparse in nature. Since most of the energy in a video is
concentrated in the low frequency components, the high frequency
components are expected to occur with smaller magnitudes. The
quantization step during MPEG encoding will also turn most of
the high frequency components to zero in the DCT blocks. With
the above mentioned observations, we consider only first 16 non-
zero values in the zig-zag order of a 8×8 DCT block. The Eq. (4)
computes the predicted macroblock in MBIMC scheme. The DCT
blocks X1,X2, . . . ,X9 are now considered as sparse matrices.
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Table 2. Computational requirement of Modified MBIMC
Operations Mults. Add

Two multiplication of B1 matrix 0 0
(requires zero operations per 24×24 matrix, assuming 16 non-zero coeff.)

Two multiplications of B2 matrix 144
(requires 72a per 24×24 matrix, assuming 16 non-zero coeff.)

One multiplication of J5 matrix 72 672
(requires 36m, 336a per 24×24 matrix, assuming 16 non-zero coeff.)

One multiplication of K5 matrix 72 672
(requires 36m, 336a per 24×24 matrix, assuming 16 non-zero coeff.)

Four 2D DCT operation 160 928
(requires 40m, 232a per 8×8 block)

Total computations 232 1744

The matrix

[
X1 X2 X3
X4 X5 X6
X7 X8 X9

]
of size 24× 24 in Eq. (4) represent-

ing the nine adjacent DCT blocks will now contains many zeros
(assuming only 16 non-zero coefficients in each block).

The matrix multiplication of B1/Bt
1, B2/Bt

2, Jr and Kc matri-
ces with the above mentioned 24×24 sparse matrix can further be
optimized to reduce the computational complexity of the IMC op-
eration. The multiplication of B1/Bt

1 requires no operations. The
B2/Bt

2 matrix multiplication requires 72 additions only. It may
be noted that the Jr and Kc matrices are sparse matrices and both
have similar kind of structure. An efficient matrix multiplication
technique for Jr can also be implied for Kc. We have optimized
the matrix multiplication of Jr and Kc with 24× 24 sparse DCT
matrix following the similar strategy as discussed in [3]. The com-
putations required to perform matrix multiplication of Jr matrices
with 24×24 sparse DCT matrix are calculated and given in Table
1.

Let us consider a case when r = c = 5 in Eq. (4). This requires
maximum number of computations to perform IMC (refer Table
1). That is why it is considered for finding the computational re-
quirements in the worst case. Total operations required to perform
the IMC (when r = c = 5) in our proposed modification using Eq.
(4) for each 16×16 block is 232m + 1744a (see Table 2). This re-
quires 0.9m + 6.8a operations per pixel which is significantly less
from the MBIMC scheme. Here ’m’ and ’a’ represents a multi-
plication and an addition operation respectively. If we assume that
one multiplication is equivalent to three machine instructions and
one addition is one machine instruction (refer [6]). We get approx-
imately 70% improvement in speed over MBIMC scheme with an
average reduction of 0.4 dB in psnr.

3. PROPOSED VIDEO DOWNSCALING SYSTEM

Our proposed video downscaling system is shown in Fig. 2. The
input video is VLC decoded and inverse quantized to get the DCT
blocks. The optimized MBIMC scheme is used to convert inter
blocks in to intra blocks. All the intra blocks are downscaled by
two using DCT domain based algorithm [1]. In the lower half por-
tion of the Fig. 2, the downscaled DCT frames are re-encoded as
per MPEG standards. AMVR system [6] is used to re-estimate
the motion vector which is fed to DCT based motion compensa-
tion block. The MTSS [7] is used to determine the type of the
macroblock. As per MTSS, a downscaled macroblock is coded as
intra macroblock if and only if there are more than two intra coded
macroblocks (out of four adjacent macroblocks) in the original
video stream. Since motion vectors are computed using AMVR
technique[6], the modified MBIMC scheme is used to compute
the predicted macroblock for downscaled video. One should note
here that all the operations are being performed in the DCT do-

Table 3. Computational complexities of different video down-
scaling systems for downscaling a P frame from CIF resolution
to QCIF resolution

Function Complexity
Mults. Adds Shifts Total Cost

Spatial Domain based downscaling
Input CIF frame processing

Inverse Quant. + IDCT (144m, 464a per 8×8 block) 228096 734976
Inverse Motion Compensation (256a per 16×16 block) 101376

Output QCIF frame processing
Downscale by 2 (3a, 1s per pixel) 76032 25344

Full search ME (±15 pels, 738048a per 16×16 block) 73066752
Motion Compensation (256a per 16×16 block) 25344

DCT + Quant. (144m, 464a per 8×8 block) 57024 183744
Total 285120 74188224 25344

Total Operation count (Add = 1 op, shift = 1 op, Mult. = 3ops) 75068928
Hybrid (Spatial + DCT domain) downscaling

Input CIF frame processing
Inverse Quant. + IDCT (144m, 464a per 8×8 block) 228096 734976

Inverse Motion Compensation (256a per 16×16 block) 101376
Output QCIF frame processing

Downscale by 2 (3a, 1s per pixel) 76032 25344
AMVR (9m, 30a, 1shift per 16×16 block) 891 2970 99

Motion Compensation (256a per 16×16 block) 25344
DCT + Quant. (144m, 464a per 8×8 block) 57024 183744

Total 286011 1124442 25443
Total Operation count (Add = 1 op, shift = 1 op, Mult. = 3ops) 2007918

Proposed Pure DCT domain based downscaling
Input CIF frame processing

Inverse Quant. (64m per 8×8 block) 101376
IMC using modified MBIMC ( (0.9m, 6.8a per pixel) 91238 689357

(assuming only 16 non-zero coeff.)
Output QCIF frame processing

DCT Downscale by 2 (1.25m, 1,25a per pixel) 126720 126720
AMVR (9m, 30a, 1shift per 16×16 block) 891 2970 99

DCT domain MC (0.9m, 6.8a per pixel) 22810 172339
(assuming only 16 non-zero coeff.)

Quant. (64m per 8×8 block) 25344
Total 368379 991386 99

Total Operation count (Add = 1 op, shift = 1 op, Mult. = 3ops) 2096622

Table 4. Comparison of video downscaling methods

PSNR (dB)
Spatial Domain Hybrid Domain DCT Domain

video Y U V Y U V Y U V
Coastguard 25.17 32.54 32.55 24.96 32.45 32.45 25.13 42.22 43.16

Foreman 28.61 32.20 32.08 28.29 32.00 31.92 29.42 40.09 41.09
Susi 33.90 32.94 32.44 33.86 32.93 32.43 36.83 49.92 49.23

Tennis 24.98 32.36 31.58 24.97 32.36 31.57 26.49 41.60 41.95
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Fig. 2. Proposed DCT domain based Video Downscaling System

main. The DCT being linear orthonormal transform, the predicted
DCT blocks can directly be subtracted from intra DCT blocks, to
compute the error DCT blocks. Finally the error bits are computed
and sent to rate control module which sets a new quantization step
size to control the bit rate of the downscaled video.

Our proposed DCT domain based system is compared with
spatial and hybrid domain [6] video downscaling systems. The
computational complexities of each system is given in Table 3.
The complexity of each operation is shown in number of multipli-
cation, addition and shift operations. In Table 3, ’m’ represents
multiplication, ’a’ represents addition operations. It is assumed
that one multiplication is equivalent to three machine operation
and an addition and a shift is equivalent to single machine opera-
tion respectively [6]. It is shown in the Table 3 that the proposed
downscaling system requires few more number of operations than
hybrid system but it is approximately 36 times faster than spatial
domain system.

4. EXPERIMENTAL RESULTS

We have implemented the spatial domain, hybrid domain and our
proposed DCT domain based video downscaling system. The four
different videos with I and P frames are used to record the exper-
imental results, i.e. ”Coastguard”, ”Foreman”, ”Susi” and ”Ten-
nis”. All sequences are CIF resolution with 352 pixels and 288
lines at 1.5 Mpbs. The downscaled video is stored at 500 Kbps bit
rate. The downscaled frames are upsampled to original resolution
to compute the PSNR with original video frames. The spatial do-
main upsampling is used for spatial and hybrid domain technique
and DCT domain based upsampling technique[1] is used to per-
form upsampling of video frames, downscaled by our proposed
system. The average PSNR is shown in Table 4.

In Table 4, the average PSNR of 150 frames of each video for
luminance (Y) and chrominance (U and V) is shown. We can see
that in most cases the average PSNR of our proposed system is
improved by 1 dB or above compared to those obtained by hybrid
or spatial domain approaches.

5. CONCLUSION

In this paper, we proposed a DCT domain based video downscal-
ing system. It is shown that our proposed downscaling system

performs all the operations solely in DCT domain. It is compu-
tationally as efficient as a hybrid domain system, but It produces
better quality of video output than a hybrid system. The quality of
downscaled video of our proposed system is also better than the
spatial domain approach which is 36 times more computationally
expensive. The MBIMC scheme and the modification discussed in
this paper can also be combined with method proposed in [8] for
arbitrary downsizing of the video.
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