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ABSTRACT

In the present paper, adaptive genetic algorithm (AGA) is
used for training a modular morphological neural network
(MMNN) for designing translation invariant operators via Ma-
theron decomposition and via Banon and Barrera decomposi-
tion. The operators are applied to restoration of images cor-
rupted by salt and pepper noise. The AGA is used to deter-
mine the weights, architecture and number of modules of the
MMNN. Results in terms of noise to signal ratio show that the
method proposed in the present work lead to a better opera-
tors performance when compared to other methods previously
proposed in the literature.

1. INTRODUCTION

The design of translation invariant operators is a relevant pro-
blem in mathematical morphology, with applications in image
processing, such as image restoration, edge extraction and ob-
ject recognition. Many works have focused on the design of
morphological operators. Dougherty and Loce [1] designed
sub-optimal operators satisfying Matheron theorem [2] for bi-
nary image processing. Yang and Maragos [3] designed ope-
rators (min-max classifiers) according to Matheron decom-
position [2] by using the mean square error for minimizing
the cost function. Pessoa and Maragos [4] generalized Yang
and Maragos operators [3] for a neural network architecture
involving morphological/rank/linear operators. Harvey and
Marshall [5] used simple genetic algorithm (SGA) for desi-
gning morphological filters for gray level images. Olivei-
ra [6] generalized the work of Harvey and Marshall [5] by
implementing Banon and Barrera decomposition [7] via SGA
for operators non necessarily linear. Davidson and Hummer
[8] used morphological neural networks (MNN) for designing
morphological filters, differing from the classical neural net-
works [9] in the sense that the computation in each node of
the MNN is carried out by simple morphological operators in
the context of Algebra of Images [10]. Herwing and Shal-
koff [11] presented a MNN with learning based on the delta
rule for designing filter for binary images. Sousa [12] pre-
sented a general network architecture, referred to as modular
morphological neural network (MMNN), based on Matheron
decomposition [2] and in the more general Banon and Bar-
rera decomposition [7]. The MMNN training is via SGA or
via back propagation algorithm, which uses the methodology
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of Pessoa and Maragos [13] for estimating the derivatives of
the training equation. Each module of the MMNN represents
a morphological operation: dilation, erosion, anti-dilation and
anti-erosion.

The purpose of the present paper is to use adaptive gene-
tic algorithm (AGA) [14] for training the MMNN for desi-
gning translation invariant operators via Matheron decompo-
sition [2] for dilations and erosions and via Banon and Bar-
rera decomposition [7] for sup-generators and inf-generators
based on the methodology described in Sousa [12]. The AGA
is used to determine the weights, architecture and number of
modules of the MMNN.

2. BACKGROUND

2.1. Mathematical Morphology

The following equations are used in MMNN for designing
translation invariant operators [12]:

Dilation: δk = max
(
→

x +
→

a k

)
; (1)

Erosion: εk = min
(
→

x −
→

a k

)
; (2)

Anti-Dilation: δa
k = 1 − min

(
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x −
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b k

)
; (3)

Anti-Erosion: εa
k = 1 − max

(
→

x +
→

b k

)
, (4)

where
→

x is the input signal and
→

a k and
→

b k represent the

structuring element (terms
→

b k represent the reflection of the
complement of the structuring elements of anti-dilation or
anti-erosion).

2.2. Adaptive Genetic Algorithm

The AGA of Mitsuo and Cheng [14] differs from SGA by
using adaptive methods applied to crossover and mutation
operators. The method adopted in the present work is the de-
terministic adaption [14] and consists in modifying the ope-
rators rate according to a pre-stablished rule. The operators
rates are gradually decreased in each population evolution.
The following equation defines the rule adopted as the adap-
tive parameter in the rates of crossover and mutation:

Txa = Txi − (Txi − Txf ) ∗
ga

G
, (5)
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where Txa, Txi and Txf represent the current, initial and
final rates. The terms G and ga represent, respectively, the
maximum number of generations and the current generation.

2.3. Operators Design by Matheron Decompositon

Sousa [12] uses the MMNN for designing translation inva-
riant operators that satisfy Matheron decomposition theorem
[2] for dilations as well as for erosions. The theorem states
that each increasing and translation invariant operator may be
decomposed by a union or a intersection of erosions or di-
lations operators. Figure 1 presents the MMNN architecture
for Matheron decomposition [2] by dilations. The following
equations define the MMNN architecture for Matheron de-
composition [2] via dilations according to Sousa [12].

vk = δk = max
(
→

x +
→

a k

)
, (6)

where
→

x is the input image of the MMNN.

Network output: Y = min(
→

v ), (7)

where
→

v = (v1, v2, . . . , vk). (8)

The weight matrix, A, of the MMNN is defined by

A = (
→

a 1,
→

a 2, . . . ,
→

a k), (9)

where
→

a k ∈ R
k, k = 1, 2, . . . , N , represent the MMNN

weights. Symbol ∧ represents the minimum operation.
In a dual manner, the architecture for Matheron decompo-

sition [2] via erosions is defined by substituting dilations by
erosions and symbol ∧ by ∨, where ∨ represents the maxi-
mum operation.

Fig. 1. MMNN architecture used for Matheron decomposi-
tion via dilations.

2.4. Operators Design by Banon and Barrera Decompo-
sition

Sousa [12] uses the MMNN for designing translation inva-
riant operators satisfying Banon and Barrera decomposition
theorem [7] for sup-generators as well as for inf-generators.

The theorem states that each operator, not necessarily increa-
sing, and translation invariant, may be decomposed by a union
of sup-generators or intersection of inf-generators. Figure 2
presents the MMNN architecture for Banon and Barrera de-
composition [7] via sup-generators. The following equations
define the MMNN architecture for Banon and Barrera decom-
position [7] via sup-generators according to Sousa [12].

uk1 = εk = min
(
→

x −
→

a k

)
, (10)

uk2 = δa
k = 1 − max

(
→

x +
→

b k

)
. (11)

Sup-Generator: vk = min
(

→

uk

)
, k = 1, 2, . . . , N, (12)

where
→

uk= (uk1, uk2), k = 1, 2, . . . , N. (13)

Network output: Y = max(
→

v ), (14)

where
→

v = (v1, v2, . . . , vN ). (15)

The weight matrices, A and B, of the MMNN are defined
by

A = (
→

a 1,
→

a 2, . . . ,
→

aN ), (16)

B = (
→

b 1,
→

b 2, . . . ,
→

b N ), (17)

where
→

a k and
→

b k ∈ R
k, k = 1, 2, . . . , N , represent the

MMNN weights. Symbol ∧ represents the minimum opera-
tion in the sub-integrators units and symbol ∨ represents the
maximum operation in the general integrator unit.

In a dual manner, the architecture for Banon and Bar-
rera decomposition [7] via inf-generators is defined by sub-
stituting dilations by erosions, anti-dilations by anti-erosions,
symbol ∧ by ∨ in the sub-integrators units, and symbol ∨ by
∧ in the general integrator unit.

Fig. 2. MMNN architecture used for Banon and Barrera de-
composition via sup-generators.
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3. PROPOSED METHODOLOGY

The proposed methodology trains the MMNN via AGA for
designing translation invariant operators via Matheron decom-
position [2] by dilations or erosions and Banon and Barrera
decomposition [7] by sup-generators and inf-generators. The
main objective is determining the weights, architecture and
number of modules of the MMNN for designing translation
invariant operators. As an example, Figure 3 represents an
element of the AGA population, where se(i), i = 1, 2, . . . , N ,
is the set of structuring elements for the design of transla-
tion invariant operators. Terms arch and mod represent the
architecture and number of MMNN modules, respectively.
Table 1 presents an example of coding used for identifying
the MMNN architectures. Eight bits are used for determining
the number of MMNN modules.

Fig. 3. Coding of the chromosome.

Table 1. Example of code for the MMNN architectures.
Code MMNN architecture
00 Matheron decomposition via dilations
01 Matheron decomposition via erosions
10 Banon and Barrera decomposition via sup-

generators
11 Banon and Barrera decomposition via inf-

generators

4. SIMULATIONS AND RESULTS

For training the AGA for designing translation invariant ope-
rators, the fitness function, E, is defined by

E = D − Y, (18)

where D is the desired image and Y is the output of the filter
designed by AGA.

The noise to signal ratio (NSR) is used for assessing the
performance of the designed operators. It is defined by

NSR = 10 log10
(D − Y )2

(D)2
, (19)

where (D − Y )2 and (D)2 represent the mean energy of the
error (second moment of the error) and the mean energy of
the desired output (second moment of the target).

4.1. Application in Restoration of Images

A classical problem in image processing is restoration of ima-
ges corrupted by noise [15]. The present paper considers salt

and pepper noise. The classical median filter [15] is an al-
ternative commonly used for restoring imagens corrupted by
that noise.

The purpose of the present paper is the design of transla-
tion invariant operators by training the MMNN via AGA for
restoring images corrupted by salt and pepper noise.

4.1.1. MMNN Training via AGA

For designing translation invariant operators, the MMNN was
trained via AGA with an initial population of 100 elements,
maximum number of generations (cicles of the AGA) corres-
ponding to 100, with an interval of adaptive variation Txi =
1.0 to Txf = 0.5 for crossover probability and Txi = 0.05
to Txf = 0.0001 for mutation probability, according to [14].
In all simulations the noisy image X in Figure 4 (a) was used
for training the AGA, considering as the desired output the
image in Figure 4 (b).

a) X - input training b) desired output

Fig. 4. Images considered. (a) input image for training, (b)
desired output.

The following notation is considered in Table 2: MMNN
(AGA) denotes the MMNN training via AGA by using pre-
determined architecture and number of modules; MMNN
(AGA-MOD) denotes the MMNN training via AGA by using
weights, architecture and number of modules determined by
the AGA; MMNN (SGA) denotes the MMNN training via
simple (non-adaptive) genetic algorithm. Results of the me-
dian filter are also presented in the table. It is observed that
for a noisy density corresponding to 5%, MMNN (AGA) and
MMNN (AGA-MOD) overperform MMNN (SGA) and me-
dian filter. It is worth to mention that MMNN (AGA-MOD)
overperforms MMNN (AGA) by using a smaller number of
decompositions. MMNN (AGA-MOD) led to NSR=-24.52dB
with 22 decompositions, while MMNN (AGA) led to a noise
to signal ratio of -24.27dB with 100 decompositions. Figure 5
shows the image corresponding to the operator obtained by
MMNN (AGA-MOD) for Matheron decomposition by 22 di-
lations.

5. CONCLUSIONS

Results have shown that the training of the MMNN via AGA
for designing translation invariant operators is more efficient
than the median filter and MMNN trained by SGA for res-
toring images corrupted by salt and pepper noise. Training
via MMNN (AGA-MOD) has reduced the number of decom-
positions and the computational complexity in the operators
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Table 2. NSR Results for a noise density = 5%.
Method Final NSR (dB)
MEDIAN FILTER -21.55
MMNN(SGA) (8 erosions) -17.63
MMNN(SGA) (8 dilations) -19.00
MMNN(SGA) (25 erosions) -18.40
MMNN(SGA) (25 dilations) -19.70
MMNN(AGA) (8 erosions) -22.21
MMNN(AGA) (8 dilations) -23.22
MMNN(AGA) (25 erosions) -23.11
MMNN(AGA) (25 dilations) -23.76
MMNN(AGA) (50 erosions) -23.27
MMNN(AGA) (50 dilations) -24.07
MMNN(AGA) (75 erosions) -23.31
MMNN(AGA) (75 dilations) -24.13
MMNN(AGA) (100 erosions) -24.11
MMNN(AGA) (100 dilations) -24.46
MMNN(AGA-MOD) (22 dilations) -24.52

design when compared to MMNN (AGA). Future works will
consider the proposed methodology in image segmentation
and pattern recognition.
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