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ABSTRACT

In this paper we address a denoising technique based on cal-
culation of non local means through neighborhoods. Non lo-
cal neighborhoods are computed in a transformed domain,
namely the wavelet domain. A noisy image is transformed
using a lifting scheme. The wavelet coefficients in each sub-
band image are modelized by a Generalized Gaussian Distri-
bution (GGD) whose parameters (scale and shape parameters)
are estimated using an appropriate technique. The estimated
parameters are used to define a generalized non local mean
which allows us to restore the original image. Processing in
the wavelet domain is suitable since image are often available
in a compressed domain, beside, processing smaller images
allows us to reduce the computational cost.

1. INTRODUCTION

Image denoising is an attractive field of image processing.
Many techniques for image denoising are based on ”local
smoothing” [7][8]. These techniques, when performed in the
spatial domain as well as in the frequency domain fail to
properly restore the fine structures of the image. This is due
to the fact that fine structures are functionally considered as
noise. To go through this difficulty, some methods were in-
troduced where the assumption of regularity of the image is
relaxed. These alternative methods consider another prop-
erty of natural images which is redundancy. The Non Local
Mean (NLM) technique introduced in [6] restores the origi-
nal image by considering non local neighborhoods of a given
pixel. The concept of non local neighborhoods is very useful
in natural as well as in textured images. In fact, it exploits the
redundancy and allows a better contribution of different im-
age structures to denoise similar ones. In this article, we first
present an overview of the NLM as introduced in [6] then
we estimate the parameters of distribution of the orthogonal
wavelet coefficients, finally, using the latter estimated param-
eters we introduce a non local technique inspired from NLM
that we apply on wavelet sub-band images.

2. PROBLEM STATEMENT

Let g be the noisy image of support I and f the original one.
Let p be a fixed pixel on image g. The estimated value of
the pixel p in the original image is computed as a weighted
average of all the pixels in the image:

f̂(p) =
∑
q∈I

w(p, q)g(q) (1)

where w(p, q) is a weight associated to p which depends on
the similarity between the current pixel p and the pixel q.

w(p, q) =
1

Z(p)
exp(−

‖gp − gq‖
2
2

h2
) (2)

where gp and gq denote the neighborhoods of pixels p and
q respectively and h is a ”control” constant that controls the
decay of the exponential function. Z is a normalizing factor
which is, for each pixel, the sum of all exponential terms.

3. THE PROPOSED NON LOCAL METHOD

In this section, we propose to deal with the noisy image in
a transformed, compressed domain, namely the wavelet do-
main. Nowadays, digital images are often transmitted, re-
ceived and processed in a compressed domain, so it makes
sense to proceed denoising in the wavelet domain which is
widely used in compression standards. So, in the following,
we suppose we decompose the image using the second gen-
eration of wavelets based on lifting scheme [4, 5]. Namely,
ga,gh,gv,gd stand for approximation, horizontal, vertical
and diagonal sub-images corresponding to four wavelet sub-
bands in a given scale. More precisely, we use here a lifting
scheme when computing sub-images. In [3], it is proved that
wavelet coefficients in the detail sub-bands can be modelized
by means of a generalized gaussian. More precisely, wavelet
coefficients of detail sub-bands follow a generalized gaussian
distribution which can be expressed as follows:

∀x ∈ R fX(x) =
β

2αΓ(1/β)
e−(|x|/α)β

(3)
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where Γ(·) is the Gamma function, α is the scale parameter
and β is the shape parameter. The value of β determines the
decay rate of the pdf. Our purpose then, is to estimate the
scale and shape parameters.
In equation (1), the weights w(p, q) act as a similarity mea-
sure between the neighborhood of pixel p and pixel q. In
fact, when w(p, q) is large, the corresponding neighborhood
strongly contributes to the denoising of pixel p and vice versa.
Here, as we proceed in the wavelet domain, we propose to
evaluate the similarity between two image windows using the
following formula:

w(p, q) =
1

Z(p)
exp(−

‖gp − gq‖
β

(hα)β
) (4)

where the GGD replaces the gaussian measure used in (2)
as similarity measure. Therefore, we introduce a generalized
expression for the Non Local Mean defined by:

f̂(p) =
∑
q∈I

w(p, q)g(q) (5)

where w(p, q) are given by equation (4).

3.1. Parameter estimation

Several approaches have been investigated to estimate α and
β [1, 2]. The most commonly used method exploits the fol-
lowing expression of the ratio of standard deviation σ to the
mean absolute value E[| X |]:

σ

E[| X |]
=

√
Γ(1/β)Γ(3/β)

Γ(2β)
= F(β). (6)

More precisely, from a sample set (x1, . . . , xN ), the estimates

m̂ = 1
N

N∑
n=1

|xn| and σ̂2 = 1
N

N∑
n=1

(xn − m̂)2 are computed.

Then, the solution β̂ = F−1( σ̂
m̂1

) is found by using interpo-
lation and a look-up table. Recently, M.N. Do and M. Vet-
terli proposed a maximum-likelihood estimation: the shape
parameter is the solution of a transcendental equation which is
solved by an efficient Newton-Raphson algorithm [2]. These
parameters are, then, used in the NLM expression in order to
restore the original image. Once, β is estimated, the estimate
of α is given by:

α̂ = (
β

L

∑
i=1

L |xi|
β
)

1

β

3.2. Choice of the local neighborhoods

In the classical NLM method the whole image is spanned and
all its blocks contribute to denoise each pixel with a certain
multiplicative weight. Here we propose to select only ”sig-
nificant” neighborhoods. That is to mean that, to denoise a

fixed pixel p, we only consider image blocks that are simi-
lar, according to a certain distance, to the neighborhood of
p. In order to select those blocks and to eliminate the other,
we compare each neighboring pixels to p, with the considered
block using an SVD-based metric. Let consider P the direct
neighborhood of pixel p. It consists in n×n image block cen-
tered in pixel p. Let consider Q another n × n image block.
Our aim is to compare P and Q in order to make a decision
weather Q must participate to the denoising of p. Let consider
P and Q as a matrices and compute their respective singular
values, si and ŝi respectively for i = 1 . . . n. It is shown in
[10] that comparing the singular values gives us a precise idea
about the similarity between two images. So we consider the
following metric:

dp,q =

√√√√
n∑

i=1

|si − ŝi|
2

If d(p, q) is smaller than a fixed threshold, then, Q will par-
ticipate to denoising P otherwise it won’t.

3.3. Generalized NLM (GNLM) algorithm

In the GNLM, we propose to denoise the different sub-bands
of the noisy image differently. It is also possible not to per-
form a denoising procedure on all sub-bands but uniquely the
detail ones. Let consider the case where we denoise all sub-
bands. In the detail ones, we have already mentioned that
the wavelet coefficients follow a GGD. For this reason, we
compute the NLM estimate using the generalized gaussian
weighted norm proposed in (5).

In this equation, α models the width of the pdf peak (stan-
dard deviation), while β is inversely proportional to the de-
creasing rate of the peak. As α gives us an idea about the dis-
tribution of the wavelet coefficients around their mean value,
we can state that when α is ”small”, the wavelet coefficients
are concentrated around the mean value, thus, we can con-
sider that we must only consider neighborhoods situated in
a small area around the considered pixel. We propose, here,
to take α as ”radius” for neighborhoods. Inversely, when α
is ”large”, this means that in the considered sub-band there
are not many similar structures, so, that we can consider large
”radius” for neighborhoods.

Concerning the approximation sub-image, we can denoise
it using the classical NLM method. We also can denoise it
using a simpler local smoothing technique without significant
loss of performance. Indeed, the fine image structures are
preserved as treated in the detail sub-bands using the proposed
GNLM algorithm. Table 1 summarizes the GNLM algorithm
and the neighborhood selection procedure.
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1. Decompose the noisy image using lifting scheme.
2. For each image sub-band, estimate the scale pa-
rameter α and the shape parameter β.
3. For each pixel p of the sub-image, compute

dp,q =

√√√√
n∑

i=1

|si − ŝi|
2

.
4. If dp,q < τ retain the pixel q otherwise do not re-
tain it.
5. For each pixel p of the considered sub-image, com-
pute

Z(p) =
∑

q∈I,q �=p

exp(−
‖gp − gq‖

β

(αh)β
)

by considering only the retained pixels q in the sum.
6. For each pixel p, compute the corresponding de-
noised pixel: f̂(p) =

∑
q∈I w(p, q)gq

Table 1: The generalized NLM algorithm.

4. EXPERIMENTAL RESULTS

We perform denoising on a 128 × 128 portions of different
lena and cameraman images. First, we evaluate the perfor-
mance of parameter estimation. Then, we study the effect of
denoising the test images using the GNLM algorithm.

4.1. Parameter estimation performance

We decompose the Lena image using a lifting scheme to the
first level of decomposition. For each detail sub-band, we
plot the histogram of the wavelet coefficients as well as the
estimated GGD using the α and β estimated parameters. The
results are given on figure 3. We can clearly see that, for
each sub-band, the estimated GGD fits well the wavelet coef-
ficients histogram.

4.2. Denoising results

We propose, here, to denoise, only, the detail sub-bands using
the genralized Non Local Mean algorithm proposed in equa-
tion (5) and to denoise the approximation sub-image using a
simpler denoising method. Namely, we use here method de-
velopped and described in [11]. In figure 1, we compare the
quality of the denoising using the NLM algorithm in all sub-
bands and using the alternative method on the approximation
subband. We can notice that the results are really similar. So,
we apply the alternative denoising method to approximation
sub-image in further simulations.
For the lena image, we compare the performance of the clas-
sical NLM algorithm to the GNLM algorithm. To do so, we

use a similarity image quality measure (SSIM), developped in
[12]. This measure evaluates the similarity between the orig-
inal image and the denoised ones. Results are given on figure
2 and 4. We also studied the computational cost of the method
compared with the classical one. As we perform denoising on
sub-images whose size is the quarter the one of the original
image, our method is faster than the classical one.
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Fig. 1. (a): Noisy image, (b): Denoised image using the
GNLM algorithm in all wavelet sub-bands, (c): Denoised im-
age using GNLM in detail sub-bands and a simpler methof in
approximation sub-band, (d): Denoised image using the noisy
approximation sub-image, and denoised detail sub-bands by
means of GNLM algorithm.

Fig. 2. From left to right: Denoised image using GNLM al-
gorithm on a one level wavelet decomposition, Noisy image,
original image
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Fig. 3. Evaluation of the quality of parameter estimation on
different detail sub-bands.

Fig. 4. From leeft to right: Noisy image, NLM denoised im-
age (SSIM = 89%), GNLM denoised image (SSIM=92%)
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