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ABSTRACT
The goal of this paper is to report on experiments where we

use Gabor dictionaries in a TV − l∞ model for denoising.
This allows many possible choices. Our conclusions are that

the choice of the dictionary mostly impact the restoration of

textures. Moreover, for most images, better results are ob-

tained when the Gaussian term of the Gabor filters is close to

isotropic.

1. INTRODUCTION

By image denoising we mean the recovery of a datum u ∈
R

N2

from a measurement v = u + b, where b ∈ R
N2

is a

Gaussian white noise of standard deviation σ.
For few years, some authors have been investigating the

solution provided by the following model :{
minimize TV (w)
under the constraint ‖w − v‖D,∞ ≤ τ

(1)

where ‖.‖D,∞ is defined by

‖u‖D,∞ = sup
ψ∈D

|〈u, ψ〉|,

for a finite dictionary D ⊂ R
N2

and a discretization of the

total variation (see references below for details).

This model has, at least, been studied in [1, 2, 3]. (Those

references are listed in the chronological order of disclosure,

the content of these papers is summarized in the introduc-

tion of [3].) Notice that (1) can be used for image restoration

(when u also undergo a linear distortion). Though, for sim-
plicity and clarity, we do not consider this situation in this

paper.

The purpose of the current paper is to understand how to

chose the dictionary, in order to improve the results of (1). In

this regard, the authors of [2] tried a curvelet dictionary and

conjectured it is the best possible choice. The authors of [1, 3]

tried a wavelet packet dictionary.

In order to make experiments for several kinds of dictio-

nary, we tried dictionaries made of Gabor functions. The mo-

tivations for this choice are of two natures. First, as is de-

scribed in the next section, they allow many possibilities for

frequential and spatial localization. Secondly, they are often

used to describe texture and we believe that D should have
this property.

The reason for this belief is that the Kuhn-Tucker equation

satisfied by the solution u∗ to (1) is (assuming that we use
canonical inner product in the definition of norm)

∇TV (u∗) =
∑
Ψ∈D

λΨΨ

for some real numbers (λΨ)Ψ∈D. This formulation is inde-
pendent of the choice of dictionary D and for the details of
deriving, please see [3]. Moreover, if an element Ψ is such
that λΨ �= 0, we know that 〈w − v, Ψ〉 = τ . This means
that, in order to solve (1), we had to erase, as much as pos-

sible, the information modelled by Ψ (which is bad). So,
for a good dictionary there should exists a sparse represen-

tation of ∇TV (u∗) in D. When interpreted in the context
of BV ([0, N ]2) (the space of bounded variation, see, for in-
stance [4]), this means that the dictionary should give a good

description of∇TV (u∗), i.e. the curvature of the original im-
age that we want to recover, in some sense, it is just the dual

of BV .The latter is often considered for texture modeling
(For definition of dual of BV and other details, see [4] and
[5] and references therein).

Gabor filters are extensively used for texture analysis and

as they contain the oscillating (spatial and time) terms, and

texture has very closely relationship with oscillating patterns

([4]). It is very naturally that we try to use Gabor dictionary

which in fact is an overcomplete basis to give a good descrip-

tion of the dual of BV .

Notice the above heuristic is confirmed by the experimen-

tal results described in Section 5 : While we tested 12 differ-
ent dictionaries, they all provide similar results on homoge-

neous zones and in the vicinity of edges. The only differences

occur in textured zones.

Moreover, we found that, for Gabor dictionaries, the shape

of the elements of the dictionary (σ and σ′, in (3)) should not
relate to their frequency location (f , in (3)). This is, at least,
true for images in which the texture patterns are not related to

the shape of the region where the texture lives.
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2. THE DICTIONARY

2.1. From features to dictionary

In order to build the dictionary, we first consider a finite set

F = {ψk}1≤k≤r

of elements of R
N2

. In the remaining of the paper, we refer

to these elements as ”features”.

For any k ∈ {1, . . . , r} and any indexes (i, j) ∈ {0, . . . , N−
1}2, we define

Ψk,i,j
m,n = Ψk

m−i,n−j , (2)

where (m, n) ∈ {0, . . . , N − 1}2, the translation ofΨk. (No-

tice the images and features are periodized out of {0, . . . , N−
1}2.)

We then consider the dictionary

D = {Ψk,i,j , for 1 ≤ k ≤ r and 0 ≤ i, j < N}.

The dictionaryD is obviously translation invariant. More-
over, depending on the features it can also be rotation invari-

ant, scale invariant,...

3. THE FEATURES

Again, the considered features are Gabor filters, they are of

the form

gf,θ
m,n = Ce−

x2

σ − y2

σ′ cos(2π
f x

N
), (3)

where f and θ ∈ R, σ and σ′ need to be chosen, x = m cos θ+
n sin θ, y = −m sin θ+n cos θ andC is such that the l2 norm
of the features equal 1.
Knowing the features take the form (3), we still need to

determine the frequency and angular locations of these ele-

ments.

Except for the features described in section 3.4, we con-

sider a finite set of frequencies {ffl
}0≤fl≤F . We then split

the frequency band characterized by ffl
(or fl) inAfl

angular

sections. For this band, we obtain Afl
features

gffl
,θa (4)

where θa = 2πa
Afl

, for a ∈ {0, . . . , Afl
− 1}.

Once these locations are fixed, σ and σ′ are chosen so
that the Fourier transforms of the features cover the whole

disk of center 0 and radius N
2 . (Of course, we would gain

in covering the whole Fourier domain.) Moreover, σ and σ ′

are fixed automatically so that the Fourier transforms of any

two features do not too much overlap. Notice that, given (4),

there is no need to adapt the variances σ and σ′ to the angular
direction. We therefore have a bench of (σfl

, σ′
fl

)0≤fl≤F .

The sum of the Fourier transforms of the features described

below are represented on Figure 1.

Fig. 1. Sum of the Fourier transforms of the : Up-left : Gabor
I features; Up-Right : features with curvelet scaling; Bottom-

Left : Gabor III features; Bottom-Right : Gabor II features.

3.1. Features of type Gabor I

We call Gabor I features those built according to (4) where,

for non-negative integersF andA, we take, for fl ∈ {0, . . . , F},{
ffl

= 0 and Afl
= 1 , if fl = 0,

ffl
= 3

82fl−F and Afl
= A , otherwise.

We then take, for fl ∈ {0, . . . , F},

(σfl
, σ′

fl
) =

⎧⎨
⎩

(
C( 2F

N )2, C( 2F

N )2
)

, if fl = 0(
(C( 42F

N2fl
)2, C(

Afl

2πffl

)2
)
, otherwise,

(5)

with C = 4N2log(a−1)
π2 , with a is a constant, in our experi-

ments, we let a = 0.15. (The value of C is such that, once

normalized, the Fourier transform of e
− x2

C(x′)−2 = a at the
frequency x′.)

3.2. Features of type Gabor II

For non-negative integersF andA, we take, for fl ∈ {0, . . . , F},
{

ffl
= 0 and Afl

= 1 , if fl = 0,
ffl

= fl
N

2F+1 and Afl
= flA , otherwise.

The variances (σfl
, σ′

fl
) equal

(σfl
, σ′

fl
) =

{
(C( 2F+1

N )2, C( 2F+1
N )2) , if fl = 0

(C( 2F+1
N )2, C(A(1F+1)

2πN )2) , otherwise,

where C is as in (5).

3.3. Features with a curvelet scaling

For details on the curvelet scaling, see [2] and references

therein. For non-negative integers F and A, we take, for
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fl ∈ {0, . . . , F},{
ffl

= 0 and Afl
= 1 , if fl = 0,

ffl
= 3N

8 2fl−F and Afl
= rd

(
A2

fl−F

2

)
, otherwise,

where rd(t) is the closest integer to t.
The variances (σfl

, σ′
fl

) are determined according to (5).

3.4. Features of Gabor type III

This cosine dictionary, is similar to fully decomposed wavelet

packet basis of a given depth. It has the advantage of being

translation invariant.

For F ∈ N, we consider the set of frequency locations

F ′ =

{(
i
N

2F
, j

N

2F

)
, with i ∈ {0, . . . , F},

j ∈ {−F, . . . , F} and i2 + j2 ≤ N2

4

}
The set of features is then of the form

F =

{
e−

n2+m2

σ cos(2π(fxm + fyn)), for (fx, fy) ∈ F ′
}

,

for σ = C( 2F+1
N )2, whereC is as in (5). (Notice the elements

corresponding to i = 0 appear twice, in F . This should be
fixed before (1) is actually solved.)

4. NUMERICAL ASPECTS

A discrete total variation of image u ∈ R
N2

is defined as:

TV (u) =
N−1∑
i,j=0

√
(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2

where we let ui,N = ui,0 and uN,j = u0,j .

We use a penalty method, in order to solve (1). More

precisely, we minimize the unconstrained energy

TV (w) + λ
∑
Ψ∈D

ϕτ (〈w − v, Ψ〉), (6)

for a large number λ and with

ϕτ (t) = (sup(|t| − τ, 0))2.

This optimization problem is solved by a steepest descent

algorithm. In order to get such an algorithm, the main diffi-

culty is to compute the gradient of (6). It takes the form

∇TV (w) + λ
∑
Ψ∈D

ϕ′
τ (〈w − v, Ψ〉)Ψ,

where ϕ′
τ denotes the derivative of ϕτ .

We do not detail how to compute ∇TV (w). It can easily
be found in the literature. In order to compute the gradient of

the data fidelity term we need to compute the decomposition

in D and a recomposition. These two operations are detailed
in the next two sections.

type/size small medium large

Gabor I, (F, A) = (3,8) (3,16) (3,48)

Gabor II, (F, A) = (3,4) (5,4) (8,4)

curvelet, (F, A) = (3,6) (3,10) (3,32)

Gabor III, F = 7 11 18

Table 1. Parameters for the dictionary definitions. The fea-
tures of small dictionaries are displayed on Fig. 1.

4.1. The decomposition

The decomposition of u ∈ R
N2

provides the set of values

(〈u, Ψk,i,j〉)0≤i,j<N and 1≤k≤#F .

Notice that, using (2), we have, for any u ∈ R
N2

and any

feature Ψk,i,j ∈ F ,

〈u, Ψk,i,j〉 =
N−1∑

m,n=0

um,nΨk
m−i,n−j .

So the set of values (〈u, Ψk,i,j〉)1≤i,j<N , is just u∗Ψk, where

∗ stands for the convolution product and Ψk
m,n = Ψk

−m,−n

(remember the images are periodized).

The decomposition can therefore be computed with one

Fourier transform and #F inverse Fourier transform, if we
memorize the Fourier transforms of the features.

4.2. The recomposition

Denoting Λ = (λk
i,j)0≤i,j<N and 1≤k≤#F andm = #FN2,

the recomposition takes the following form

T : Λ ∈ R
m →

#F∑
k=1

N−1∑
i,j=0

λk
i,jΨ

k,i,j ∈ R
n.

Using (2), we get

T (Λ) =

#F∑
k=1

λk ∗ Ψk

This can be computed with #F Fourier transforms and one
inverse Fourier transform.

5. EXPERIMENTS

We report on denoising experiments of the image ”Barbara”.

The noise variance is σ = 20. The twelve dictionaries de-
scribed in Table 1 have been tested. For each dictionary, we

tuned the parameter τ (in (1)) in order to obtain good visual
results. The images can be found on

http : //www.math.univ − paris13.fr/ ∼ zeng/gabor/
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Fig. 2. Barbara image. The most interesting zones are in
white.

Fig. 3. Left : zone 1; Center : zone 2; Right : zone 3.

In this paper we focus on three regions of the images.

They corresponds to the white zones on Figure 2. The zones

are represented on Figure 3.

Zone 1 contains an edge. All the dictionaries give about

the same kind of results (see Table 2).

Zone 2 contains a texture whose orientation is not related

to the shape of region where it lives. Gabor II features, whose

spatial localization is almost isotropic, give the best results.

Features with a curvelet scaling, whose spatial localization

is strongly anisotropic and fits the texture patterns, give the

worst (but comparing with other classical denoising method

such as ROF, it is much better). Fig. 4 compares the result for

curvelet(medium) dictionary and Gabor II (medium) dictio-

nary, though the performances of the two methods are numer-

ically (PSNR in dB) almost indistinguishable, but the vision

effect of Gabor II is much better than curvelet.

Zone 3 contains a texture supported on an elongated re-

gion. Moreover, the pattern of the texture fits the shape of the

region where it lives. Features with a curvelet scaling or ga-

bor II give better results than the other features. Our belief is

that this region might be rare in natural images. From Table

3, we can see that this time the performances are more varied.

type/size small medium large

Gabor I 27.2375 27.1484 27.1073

Gabor II 27.2617 27.1569 26.8859

curvelet 27.2239 27.1711 27. 0189

Gabor III 27.2449 27.1612 26.8798

Table 2. PSNR for zone 1.

Fig. 4. Left : Noisy zone 2; center : result for the medium
curvelet dictionary, PSNR = 21.7; Left : result for the
medium Gabor II dictionary, PSNR = 23.4.

type/size small medium large

Gabor I 19.4346 9 19.113 21.0173

Gabor II 20.6871 20.0332 21.8354

curvelet 18.7523 21.0859 21.0625

Gabor III 20.4984 17.0148 20.4302

Table 3. PSNR for zone 3.

But visionly, we can barely see the difference between the im-

ages(for more clearly comparing, please see online results) .
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