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ABSTRACT

We present a novel method for Blind image restoration which is a

multidimensional extension of an approach used successfully for au-

dio restoration. A nonstationary image model is used to increase

reliability of blur estimates. This source model consists of a sep-

arate autoregressive model in each region of the image. A hierar-

chical Bayesian model for the observations is used, and a maximum

marginalised a posteriori (MMAP) blur estimate is obtained by opti-

mising the resulting probability density function.

1. INTRODUCTION

With the recent rapid growth of digital photography, using small low-

cost optics in conjunction with signal processing to enhance or re-

store images is an ever more attractive option, due to increasingly

abundant processing power. In practice, many images suffer from

blur due to optical imprecision, mis-focussing or motion blur; exact

specification of these blurs is usually unknown a priori.
Blind image restoration (BIR) attempts to tackle the problem

by estimating the degradation from the image itself, using available

prior knowledge about the general nature of the image and blur. Ex-

isting methods have used either simplistic models for the image and

blur or imposed deterministic constraints on the image. A summary

of earlier methods is presented in [1]. Methods may be classed as a
priori (estimating the blur then restoring the image), joint (simulta-

neous estimation and restoration), or direct (bypassing blur identifi-

cation, as in some recent multichannel methods).

We propose a new a priori blur identification method, using a

maximum marginalised a posteriori (MMAP) formulation. In essence,

this involves evaluating the goodness of fit of the restored image to

a nonstationary image model, thereby finding a blur estimate.

The majority of existing work has been on joint methods, where

it is common to estimate the image and blur alternately. Many use a

form of alternating minimisation (AM) algorithm, as an extension to

regularisation theory. Total variation (TV) smoothness criteria have

featured in recent work [2], attempting to minimise a cost function

based on data fidelity and piecewise smoothness of the image and

blur. Extensions to this idea have shown promise [3]. Other earlier

methods use deterministic constraints [1] imposed at each iteration,

also switching between the image and blur; these tended to be ei-

ther unstable or not general-purpose. Convergence of many of these

algorithms is either ill-defined or is to local maxima.

The use of parametric models for the observed image has been

considered by several authors, typically using autoregressive moving

average (ARMA) models; for example, maximum likelihood (ML) es-

timation has been considered in [4]. Though the ML formulation
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Fig. 1. Generative source-image & blur model

itself is essentially an a priori parameter identification, use of the

expectation maximisation (EM) algorithm provides an external prob-

lem which incorporates image restoration as well as blur identifica-

tion resulting in a joint procedure. Again this method may converge

to a local maximum.

The earliest work on a priori blur identification is based on

methods that looked for patterns of zero crossings or spikes in the

spectral or cepstral domains [5]. Similar to our proposed technique,

these methods in fact use a block-stationary approach. Presented

through empirical arguments, results show some limited success.

By averaging together the blocks, the stationary term in the blur be-

comes more identifiable over the mean nonstationary image. We aim

to combine these ideas with a more formal image model.

In addition — although not stated as such — many other tech-

niques using cost functionals or deterministic constraints impose im-

plicit stationary image models that are overly simplistic, assuming

homogeneous images. In this paper, a more robust optimal solution

is developed using stochastic models and Bayesian parameter esti-

mation techniques. Nonstationary models aid in blur identifiability

compared to existing stationary image models in [4]. Interestingly, a

block-stationary AR (BSAR) model is also used in [3] for blur support

estimation; in this work we apply these models to blur identification.

2. BIR PROBLEM FORMULATION

The m× n observed image, g(i, j), is modelled as the discrete con-

volution of an unobserved ideal (non-degraded) image, f(i, j), and a

spatially invariant point-spread function (PSF), h(k, l), with additive

white Gaussian noise (WGN), w(i, j). This general linear model (see

Fig. 1) can be expressed in matrix-vector form:

g = Hf + w, (1)

with lexicographically ordered images f and g and block Toeplitz

with Toeplitz blocks (BTTB) degradation matrix H [6]. The task of
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BIR is to estimate f from g where the PSF is unknown. This discrete

ill-posed problem requires prior knowledge to constrain the solution.

We use a hierarchical Bayesian image model to achieve this.

2.1. MMAP Methodology

A stochastic BSAR image model and a spatially-invariant blur model

are used. The likelihood is formed for the observed image, given the

true image model and its parameters. The Bayesian paradigm allows

the posterior probability density function (PDF) to be expressed, us-

ing priors for the model parameters. The actual values of the image

model parameters are not needed for deblurring, only those of the

blur. They may be marginalised to yield the PDF of the blur param-

eters alone given the observed image. This function may then be

optimised numerically, giving the blur estimate which restores the

image optimally under the constraints of the model. In theory, while

optimisation may be performed on the full joint PDF, marginalisation

reduces the search space dimension.

2.2. Nonstationary Image Model

A linear model is used for the idealised source image (see Fig. 1).

The BSAR model splits f into M×N blocks. Each block is modelled

by a 2D autoregressive (AR) process of order (ma − 1)× (na − 1).

Present work considers a causal model, with P = MN(mana − 1)
AR coefficients, aIJ(k, l). The stacked vector of these lexicographi-

cally ordered coefficients is a. The image model is written:

f = Af + v, (2a)

or equivalently, f = F a + v. (2b)

In (2a), the matrix A is of a similar form to H , with m × m square

n × n blocks; however it is only BTTB if M = N = 1. In (2b), the

data matrix, F , is again BTTB only in the case of a single block, and

is not square. Moreover, it is of size mn × P ; the ((i − 1)n + j)th

row includes the pixel values f(k, l), such that (k, l) ∈ Sa(i, j)
(see Fig. 2). Sa(i, j) is the causal AR support region for pixel (i, j),

containing the mana−1 pixel locations upon which f(i, j) depends.

The excitation noise or modelling error, v, is assumed to be WGN.

The PDF of the source and blurred image may be found by lin-

ear probability transformations of the excitation and noise variables,

v ∼ N (0, Qv) and w ∼ N (0, Qw). Since v = (Imn − A)f ,

p (f |a, Qv ) = N (f | 0,Σf )

=

s
det |Imn − A|2
(2π)mn det |Qv| exp

»
−1

2
fT Σ−1

f f

–
,

(3)

with covariance Σf = E[ffT ] = (Imn − A)−1Qv(Imn − A)−T .

The Jacobian det |Imn − A| is unity in the case of a causal image

model since A is (lower) triangular. Ip is the p × p identity ma-

trix. Qv is diagonal, and allows an individual variance, σ2
IJ , in each

block. Experimental results show this model gives more accurate

blur estimates than a global variance across the whole image.

(a) (b)

Fig. 2. (a) A 16×16 pixel image, f , and (b) corresponding 60×256
data matrix, F T , formed for M = N = 2 and ma = na = 4 .

2.3. Likelihood for blurred image

The likelihood is obtained by combining (1) and (3), to give [4]:

p(g|a, h, Qv, Qw) = p(Hf ) ∗ p(w) = N (g | 0,Σg ) , (4)

where Σg = H(Imn − A)−1Qv(Imn − A)−T HT + Qw, and

H is parameterised by h, the vector of coefficients defining the PSF

h(k, l). Unfortunately, with this form it is difficult to analytically

perform the marginalisation in §2.6, due to the presence of Qw in

Σg . Thus, as an approximation Qw is omitted such that the exponent

in the likelihood becomes exp[− 1
2
f̂T (I − A)T Q−1

v (I − A)f̂ ].

For clarity, the term H−1g, representing an estimate of f (see

§2.8), is denoted f̂ , with coresponding data matrix F̂ .

2.4. Prior Distributions for source & blur model

To form the hierarchical Bayesian model, priors are placed upon

the other model parameters. These must be both representative of

our existing beliefs and allow for mathematically tractable results.

Presently, a standard Gaussian prior is chosen for a:

p (a) = N `
a

˛̨
0, δ2Rv

´
(5)

and an inverse-Gamma (IG) prior for the excitation variance:

p(Qv) =
Y
IJ

p(σ2
IJ |αI,J , βIJ), and for each variance

p(σ2|α, β) = IG(σ2|α, β) =

(
βασ−2(α+1)

Γ(α)
e
− β

σ2 σ2 > 0

0 otherwise
.

(6)

An uninformative prior with large variance is currently used for p(h).

Hyperparameters δ and {αIJ , βIJ} may also be chosen to make the

priors tend to be uninformative, although δ may be set to model the

variance of stable AR coefficients. The P × P matrix Rv , is diago-

nal and constructed with the variances for each block. The image and

blur priors are independent: p(h, a, Qv) = p(h)p(a|δ, Qv)p(Qv).

2.5. Posterior Distribution

The posterior is found by applying Bayes’ rule to the likelihood:

p(h, a, Qv|g) =
p(g|h, a, Qv)p(h, a, Qv)

p(g)
(7)

∝ det |Qv|− 1
2 det |Rv|− 1

2

(2π)
(mn+P )

2 det |H |
exp

»
aT R−1

v a

δ2

–
p(Qv)

· exp

»
−1

2
(f̂ − F̂ a)

T
Q−1

v (f̂ − F̂ a)

–

∝ p(Qv) det |Rv|− 1
2

(2π)
(mn+P )

2 det |H | det |Qv| 12

· exp

»
− 1

2

“
aT {F̂ T Q−1

v F̂ + δ−2R−1
v }a

− 2aT F̂ T Q−1
v f̂ + f̂T Q−1

v f̂
”–

.

(8)

Notice that since it is only necessary to find a function that can be

maximised by varying the parameters, any constants of proportion-

ality not dependant on the model parameters may be ignored.

It would also be possible in this case to find a representation of

p(h, a, Qv, Qw|g) from the full joint PDF p(g, f , h, a, Qv, Qw)
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by integrating out f ; this is termed evidence analysis in [7]. We

apply a similar principle in §2.6 to estimate h alone.

2.6. Marginalisation of Nuisance Parameters

The AR model parameters are not directly relevant to finding the

probability of the blur parameters. Integrating the posterior with re-

spect to these nuisance parameters, the marginal PDF is:

p(h|g) =

Z
· · ·

Z
p(h, a, Qv|g) da · dQv. (9)

The integration is done in a similar manner to that described in [8],

via standard Gaussian and Gamma integrals. This results in equation

(10) overleaf. In order to marginalise the variances, the image is split

into its component blocks f̂IJ and the corresponding data matrices

FIJ are formed by extracting the appropriate sections of F ; note

that construction of each FIJ depends on the surrounding blocks.

2.7. Blur Parameter Estimation

This function is numerically optimised over the space of possible

blurs; it is usual to take the negative log and minimise:

ĥ = arg min
h

` − ln p (h|g)
´
. (11)

For each blur under test, the procedure essentially consists of finding

a restoration f̂ of the whole image using this particular Ĥ , then (10)

effectively checks how well this conforms to our model. The term

f̃IJ = F̂IJ âIJ = F̂IJ

n
F̂ T

IJ F̂IJ + δ−2I P
MN

o−1

F̂ T
IJ f̂IJ (12)

may be regarded as a prediction of f̂IJ using an estimate of the AR

parameters for this block, âIJ . Then the model fitting term given

by f̂T (f̂ − f̃ ), as used in the numerator of equation (10), is the

prediction error weighted by the local image magnitude.

2.8. Blur Model

Although the method presented should apply to a general linear blur

model, such as the commonly used non-causal moving average (MA)

PSF model, in our experiments a causal parametric AR blur is used.

There are several reasons for this: firstly, the complicated det |H |
term need not be calculated; secondly, this conforms to work in [8]

where the method has been extensively tested in the 1D case.

Furthermore, an inverse filtering operation is used to find f̂ =
H−1g. This does not incorporate any regularisation; however with

an AR blur model, H−1 is well defined, and we are effectively es-

timating an MA restoration filter which does not severely amplify

noise. To include regularisation in the model, a variant of the method

using Gibbs sampling can be used and will be discussed in future

work. A regularised estimate for f̂ could be used here, but as it is

not part of the model, parameter estimates may not be optimal.

In practice, the H terms implicit in (11) are replaced by (Imn−
H ′)−1, where this new H ′ is generated in a similar way to the orig-

inal H , and parameterised by a vector h′. In the first order case,

h′ = [h1, h2, h3], and the defining kernel h′ used to construct H ′ is

h′(k, l) =

»
h3 h2

h1 •
–

, (13)

where the • marks the center of the kernel image.

3. EXPERIMENTAL RESULTS

3.1. Synthetic Image, Synthetic Blur

The algorithm is first validated using synthesised data generated ac-

cording to the BSAR model. Since there is no equivalent to the fun-

damental theorem of algebra in dimensions higher than one [1], it is

not generally possible to produce a factorisation of the polynomial

space to produce a pole-zero plot as in the 1D case [8]. Thus for vi-

sualisation on a 2D plot, we first consider only two blur parameters.

Experiments with various block sizes and model orders have

been tried. In the example shown in Fig. 3(a), a first order AR process

is used for the blur and the source image. WGN is used to drive the

source, whose AR parameters âIJ for each 16 × 16 pixel block are

estimated from the 256 × 256 Cameraman image. Noise is added to

the blurred image at 40dB blurred-image SNR (BSNR) (see Fig. 3(b)).

In Fig. 4, (10) is evaluated across a grid of points centred on the true

blur parameters, in this example chosen as h′ = [0.45, 0.35, 0.05].
The first two parameters are chosen as the unknowns, and the last is

assumed known, to enable plotting the PDF. The estimate of the blur

parameters is chosen at the location of the minimum on the plot, in

this case correctly estimated as [ĥ1, ĥ2] = [0.45, 0.35].
The experiment is repeated, but with optimisation across all three

parameters of h′, using the deterministic nonlinear Nelder-Mead

Simplex method, producing ĥ′ = [0.442, 0.347, 0.058]. The re-

stored image using the inverse filter (I −H ′) is shown in Fig. 3(c).

(a) f (b) g (c) f̂

Fig. 3. (a) 1st order BSAR synthetic image with 16×16 pixel blocks

(b) Blurred image, at 40dB BSNR (c) Restored image. (central crops)
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Fig. 4. Probability for AR blur parameters, p(h′|g), over the space

of [h1, h2]. Also shown are the first two source AR parameters,

[a1, a2]IJ for each block (triangles). Contours have been com-

pressed to give more detailed coverage in flat parts of the PDF.
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p(h|g) ∝ 1

det |H |
MY

I=1

NY
J=1

0
BB@

“
f̂T

IJ

“
f̂IJ − F̂IJ

˘
F̂ T

IJ F̂IJ + δ−2I P
MN

¯−1
F̂ T

IJ f̂IJ

”
+ 2βIJ

”−
mn
MN

+1+2αIJ
2

det
˛̨̨
F̂ T

IJ F̂IJ + δ−2I P
MN

˛̨̨ 1
2

1
CCA (10)

3.2. Real Image, Synthetic Blur

The 256 × 256 pixel Cameraman image is blurred with the same pa-

rameters, and noise added at 35dB BSNR, shown in Fig. 5. The blur

is estimated using the same deterministic optimisation method, us-

ing 8 × 8 pixel blocks, with hyperparameters αIJ , βIJ = 0, δ = 1.

The image model was found to need some modification however.

Firstly, unlike true AR signals, real images are inherently non-

zero mean. Removing the global mean from the image is not enough;

the estimated local sample mean of each block is required to more

accurately model the true image. Thus in the estimation procedure,

after f̂ is found, the mean of each block is subtracted. Care is re-

quired when subtracting these means from the matrix F̂ , since it is

the local mean for each block that should be used; as such any data

elements providing boundary conditions for a block must use the

mean of their neighbour and not their own block mean, and these

will have different values depending on the block in question. This

procedure avoids discontinuities in the data.

Furthermore, experimentation has shown that a 1st order model

does not well represent a real image. Tests with different block sizes

and model orders indicated 8 to 16 pixel blocks with 2nd to 8th order

models tend to give good results. A 3rd order source model is used

for the present experiment. With these changes — despite exclusion

of the noise from the model — a successful restoration is still possi-

ble. At lower BSNRs, the restoration is still sharp, but the amplified

noise becomes more prominent.

(a) f (b) g

(c) f̂ (d) f̂T (f̂ − Âf̂)

Fig. 5. Cameraman (a) source; (b) blurred; (c) restored and (d)

weighted prediction error images. Central crop shown.

The estimated blur is found as ĥ′ = [0.473, 0.377, 0.011] in

the 35dB case. Due to the slight error, a small number of super-

white and super-black pixels are produced with intensities outside

the range of the source image (giving longer tails in the image his-

togram). Thus to display the image correctly, these tails should be

clipped, or histogram specification may be used. The image estimate

after clipping is shown in Fig. 5(c). The model fitting term (§2.7) is

shown in Fig. 5(d).

4. CONCLUSIONS

This paper is primarily concerned with the use of a nonstationary

image model, and a robust framework for blur identification using

this model, rather than a particular optimisation approach. We have

shown that the MMAP method provides a means to reliably estimate

blur parameters, with the parameter-space dimensionality reduction

provided by marginalisation, and nonstationary BSAR image model

both reducing ambiguity in these estimates.

We note that while the causal AR blur model does not exactly

match real blurs, the method should be extendible to other blur mod-

els. We are also investigating more advanced image models, with

non-rectangular regions and local means, and Gibbs sampling and

Markov chain Monte Carlo (MCMC) methods for optimisation under

more complicated degradation models, including observation noise.
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