
NOISE IDENTIFICATION AND ESTIMATION OF ITS STATISTICAL PARAMETERS BY
USING UNSUPERVISED VARIATIONAL CLASSIFICATION

B. Vozel, K. Chehdi, L. Klaine

IETR-TSI2M, UMR CNRS 6164
BP 80518, 22305 Lannion Cedex - FRANCE

Vladimir V. Lukin, Sergey K. Abramov

National Aerospace University,
61070, Kharkov, Ukraine

ABSTRACT

This paper deals with the problem of identifying the nature of the
noise and estimating its statistical parameters from the observed
image in order to be able to apply the most appropriate processing
or analysis algorithm afterwards. We focus our attention on three
main classes of degraded images, the first one being degraded by
an additive noise, the second one by a multiplicative noise, and the
latter by an impulse noise. To improve the identification rate, we
propose an unsupervised variational classification through a multi-
thresholding method. Each class is then characterized by statistical
parameters obtained from homogeneous regions. For the accuracy
of the estimation of the noise statistical parameters, we distinguish
the corresponding local estimates statistical series according to the
number of pixels taken into account to calculate them. The exper-
imental study highlights the improvement so obtained and shows
the efficiency and the robustness of the whole method.

1. INTRODUCTION

The majority of filtering algorithms in the literature [10], [8], [9],
[5], assume that the nature of the noise and its statistical param-
eters are known. Whereas in most practical cases, we have no a
priori knowledge on these data [1], [6]. For this reason, the nature
and the statistical parameters of the noise must be estimated as they
condition the quality of the filtering or the analysis of the images.
In this paper we are interested in the problem of identifying the
nature of the noise and then estimating its variance from the ob-
served image. In [4], we prove it is possible to identify the nature
of the noise by recording variations of local statistics (the standard
deviation as a function of the average) computed in the homoge-
neous regions of the observed image. If the recording is parallel
to the average axis, then the noise is declared as an additive one
and its standard deviation is equal to the sampling average of the
different values of the local standard deviation. If the recording
can be assimilated by a line passing through zero, then the noise is
declared as a multiplicative one and its standard deviation is given
by the slope of the line. And finally, if the recording can not be
viewed as a line passing through zero, then the noise is declared as
an impulsive one.

In order to increase the identification rate and to improve the
estimation of statistical noise parameters, we propose to use more
powerful and advanced refined classification and estimation pro-
cedures instead of earlier proposed (old) procedure [4].
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In section 2, we deal with the detection of homogeneous re-
gions. We first propose an improvement of the classical image
multi-thresholding methods. The goal is to achieve the precise
determination of homogeneous zones in numerical images by pix-
els classification. The thresholds and the modes are obtained by
minimization of a new energy of gravitational clustering initial-
ized with the significant peaks of a cumulated histogram. Then,
the best modes and the best thresholds are calculated by alternate
optimization of an energy of multi-thresholding, leading to a piece-
wise quadratic potential. This energy is built from a total unifor-
mity criterion which measures the homogeneity of a given map of
regions. Finally, an unsupervised classification is performed by
use of a supervised variational classification approach which min-
imizes an adapted energy of transitions of phases. The potential
which controls the classification process is built from the previ-
ously determined best thresholds and modes.

In section 3, we precise the noise identification and estimation
of its statistical parameters. Concerning the estimation procedure,
the improvement is based on the use of the local statistics calcu-
lated by means of the homogeneous regions map obtained in the
previous classification stage, while varying the analysis windows
size. The analysis of these discrete local estimates statistical series
shows that it is not relevant to discriminate them only according
to the window size. Indeed, it is better to consider the number of
pixels taken into account within the analysis window to calculate
them. We thus ensure that two local statistical estimators, belong-
ing to the same set, follow the same statistical law. Then, the ex-
pectation of the not-biased local estimates coincides with the noise
variance. In practice, we subsequently replace the law expectation
by the global empirical mean average on the statistical series. The
experimental study is carried out in the last section to show the
efficiency and the robustness of the whole method.

2. DETECTION OF HOMOGENEOUS REGIONS

2.1. Motivations

The detection of homogeneous regions by histogram transforma-
tion is a difficult task. An histogram can be viewed as multimodal
if the modes are sufficiently distant from each other. However,
the multi-modality is not well defined as the minimal distance be-
tween the modes is not explicitly given. The histogram transfor-
mation that we propose, considers an alternative modelling of the
histogram by a dynamic representation. The values of the his-
togram are comparable with the masses and the samples with the
positions of a dynamic system of the previously defined masses.

Formally, we allow the histogram to take real values but only
in the range of real light intensities I . It must be contained in C(I)
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the closed convex envelope of I .
The initial vector of the positions �x0 is defined by x0

i = i.
The vector of the masses �h is defined by �h = �hcum where hcum

i =
µcum({i}). hcum

i are the significant peaks of the cumulated his-
togram�hcum. They are computed from local histograms computed
on sliding windows with different sizes (16×16, 32×32, 64×64)
of the original image. The different sizes of the sliding window al-
low to take account of the spatial resolution of the image and to get
an initial histogram �x0 with a well pronounced multi-modal form
[7].

2.2. The Gravitational Energy

The energy of gravitational clustering is defined by:

Qgc(�h; �x) �
1

2

∑
i∈I

∑
j∈I

hihjδi,j(�x)|xi − xj |
2 (1)

It measures the dispersion of the positions with regard to the rel-
ative centres of gravity. We call centre of gravity relative to a
position, the barycentre of the positions located within a radius
lower than a maximum preset distance and named gravitational
radius. The gravitational equation is built to cancel the derivative
of the energy of gravitational clustering �x minimize Qgc(�h; �x).
This equation defines the trajectory of the positions through the
gravitational field.

�x(0) = �x0 and
d�x

dt
(t) = �G(�h; �x(t)) − �x(t)

t → +∞

Each position can be moved towards its relative centre of gravity.
�x = �G(�h; �x) where the gravitational field is given by:

�G(�h; �x) � G(�h; �x).�x (2)

Gi,j(�h; �x) �
[∑

k∈I
δi,k(�x)hk

]
−1

δi,j(�x)hj (3)

δi,j(�x) � H(R(xi, xj) − |xi − xj |) (4)

The condition R(xi, xj) = sup(R(xi), R(xj)) > |xi − xj |
simply translate the determination of the relative centres of gravity.

The trajectory is simply controlled by the proximity and the
importance of specific masses. The positions are attracted by their
relative centres of gravity. The gravitational radius is essential to
precisely quantify the multi-modality with regard to the positions
of the modes.

Thus, the gravitational clustering returns a vector of the posi-
tions gradually constant on each class. Visually, the vector of the
positions takes a staircase shape. The positions are converted into
integer values to preserve a meaning in the set of light intensities.
The histogram corresponding to �x∞ is denoted histogram of the
centres of gravity hgc(·). It is multimodal and the modes are given
by the various levels of the vector �x∞.

2.3. The Multi-Thresholding Energy Criterion

The thresholds and the modes must be ordered so that each mode
lies between two consecutive thresholds. The aim of this section
is to determine the best thresholds and the best modes with regard
to a criterion denoted the total uniformity criterion. This choice is
not coarse and the most intuitive is not necessarily the best.

The total uniformity criterion measures the quality of a map
of homogeneous regions. Its principle is built on the idea that an
area is uniform if the dispersion of the grey levels is weak.

We can measure the uniformity of an area by estimating the
intra-area variance. We estimate the total uniformity of a map by
the weighted average, by the size of the different regions, of the
intra-area variances. The energy of multi-thresholding is built in
order to coincide exactly with the total uniformity if the modes are
equal to the intra-area means. It measures the quality of the modes
and the thresholds knowing their number. This quality is estimated
by regarding the vector of the thresholds as an approximation in N
samples of the histogram. Its discrete version is given by:

Qmt(h;�s, �m) �
1

2

N∑
k=0

xj<sk+1∑
xj>sk

hj |xj − mk|
2

+
1

2

N−1∑
k=1

∑
xj=sk

hj min
(
|xj − mk|

2, |xj − mk+1|
2
)

(5)
The optimal solution consists of a continuation which alternatively
minimizes the multi-thresholding energy with regard to the modes
and the thresholds. Assuming the modes �m known, the energy
of multi-thresholding Qmt(h;�s, .) is convex with respect to the
thresholds. It admits a single minimum. This one is simply given
by the middle of the interval ranging between two modes:

sn
k =

(
mn

k + mn
k+1

)
/2 (6)

Assuming the thresholds �s known, the vector of the modes which
minimizes the multi-thresholding energy is given by the barycen-
tres of the thresholds whose weights depend on the thresholds and
the histogram:

mn+1
k = Mk(h;�sn) (7)

2.4. Unsupervised Variational Classification

When the image is seriously degraded, the a priori homogene-
ity constraint can be introduced by adding to the usual classifi-
cation term, defined by a potential, an additional regularization
term translating the homogeneity constraint [11], [3, 2]. In our
work, this classification method becomes attractively unsupervised
since the potential is automatically given from the best thresholds
�smt and the best modes �mmt obtained at convergence. It is suf-
ficient for that to build a potential whose stable phases are given
by the modes. The unstable phases are then given by the thresh-
olds. Given (�s, �m) ∈ R

2N+1 a couple of thresholds and modes,
the image u, then we define the potential W (�s, �m; ·) : R �→ R

+

by:

W (�s, �m; u) �⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

+|u − m1|
2/|m1 − s1|

2 if u ∈] −∞, s1 − η[,

+|u − mk|
2/|mk − sk−1|

2 if u ∈]sk−1 + η, mk − η[,

−|u − sk|
2/|sk − mk|

2 + Ak(η) if u ∈]sk − η, sk + η[,

+|u − mk|
2/|sk − mk|

2 if u ∈]mk + η, sk − η[,

+|u − mN |2/|mN − sN−1|
2 if u ∈]sN−1 + η, +∞[.

(8)
with Ak(η) � 1 − 2η/|sk − mk| + 2η2/|sk − mk|

2 to get a
sufficiently regular potential. In practice, the value of η is taken
very near or equal to zero. Then, Qpt writes:

Qpt(W,ϕ, ε; u) �

∫
Ω

[
εϕ(|∇u|) +

1

ε
W (u)

]
(9)
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Two different schemes can be considered to get the solution. The
first scheme, denoted [Sams1] in the experimental study, realizes
a direct minimization of the dynamic equation associated with (9)
[11] and [3, 2]. A second scheme, denoted [Sams2], performs
an alternate minimization using the semi-quadratic algorithm [11]
and [3, 2].

3. NOISE IDENTIFICATION AND ESTIMATION

In order to identify the nature of the noise, we need to calculate
local estimates of its statistical parameters. To calculate the local
statistics of interest meanΦ(u)i,j

, (var∗Φ(u)i,j
), we make use of

the homogeneous regions map ulab
h , obtained at the output of the

previous classification stage. We consider analysis windows with
different increasing size. We chose the following local estimation
kernel Φlab

[V ](v). This kernel takes into account all the pixels within
the greatest under-area of the neighborhood (i, j) + [V ] :

Φi,j,i′ ,j′ �

⎧⎨
⎩

1 if (ulab
h )i′,j′ is the most frequent label,

0 otherwise,
(i′, j′) ∈ (i, j) + [V ]

(10)

where uh is a map of homogeneous regions and [V ] the analysis
sub-window. The initial method was based on the discrimination
of the statistical series according to the window size. The analysis
of the corresponding discrete local statistical series shows that it
is not relevant to discriminate them only according to the window
size. Indeed, it is better to consider the number of pixels taken
into account. We thus ensure that two local statistical estimators,
belonging to the same set and then calculated with the same num-
ber of pixels, follow the same statistical law. It should be noted
that this law is a priori unknown, except for the Gaussian additive
noise variance. In this last case, it is a χ2 law. For each number of
pixels taken into account, we obtain a coherent list of statistics.

Identification of the nature of the noise: We now consider
that the most representative list is that which contains the most
elements at the output of the preceding classification procedure
of local statistical estimators. We fit a polynomial regression to
the set of variance estimates , according to the average estimates
meanΦ(u)i,j . We decide the noise is additive if the zero order
polynomial regression gives the best approximation within the mean-
ing of least squares criterion. The noise is multiplicative if the best
approximation is obtained by the second order regression.

Estimate of the variance of the noise: The initial method [4]
considers the most frequent standard deviation estimate from the
global histogram of the corresponding statistical series (var∗Φ(u)i,j)
and without discriminating them according to the number of pix-
els involved in their calculation. It is better, on one hand to re-use
the newly discriminated statistical series obtained in the prelimi-
nary identification phase, and on the other hand, to calculate the
estimators expectation. Indeed, the expectation of the not-biased
local variance estimates E[var∗Φ(u)i,j

] coincides with the additive
noise variance. In the same way, the expectation of the ratio of the
not-biased local variance on the square of the local mean average
coincides with the multiplicative noise variance. The necessary
condition is that all the estimators must follow the same statisti-
cal law. This is satisfied if we consider statistical series indexation
by the number of pixels taken into account to calculate local esti-
mates. In practice, we replace the law expectation by the global
empirical mean average on the statistical series. The noise vari-
ance is jointly estimated to the identification process, since the

noise variance estimates are related to the polynomial regression
coefficients. However from a theoretical point of view, it is nec-
essary to also take account of the pixels spatial proximity. Indeed,
estimates calculated on connected neighborhoods are probably not
independent.

4. EXPERIMENTAL RESULTS

We present afterwards the original image [SAVOISE] of the french
data bank of the GDR-CNRS, the degraded image, the potential
W (�s, �m; ·) used to control the classification, as well as the ob-
tained map of homogeneous regions (Fig.1). In order to objec-
tively evaluate the classification results, we also estimate the total
uniformity measure on the original images using each obtained
map of homogeneous regions.

The method of classification using the alternate minimization
[Sams2] is better provided that the parameter of regularization is
well selected. However, it is much slower and more constraining
than the method using direct minimization [Sams1]. The results
obtained by the latter are quite good and easier to control.

The procedure of noise identification was tested on various
images [BOAT], [BUREAU], [CAMERA], [CORNOUAILLE],
[COULOIR], [FEMME], [LENA], [VOITURE], [SAVOISE]
and [TEXTURE]. Different noise levels were considered for the
additive noise hypothesis σb = 10, 12, 14, for the multiplicative
noise hypothesis σn = 0.1, 0.2, 0.3, as well as different values of
the probability p = 0.2, 0.3, 0.4 of the Bernoulli density proba-
bility function of the impulse noise. We generated a set of thirty
images degraded by an additive noise, thirty images degraded by
a multiplicative noise and thirty images degraded by an impulse
noise. The result of the proposed identification method was com-
pared to the results of the previously developed identification method.
The procedure of identification of the additive or multiplicative
noise benefits from the rigorous classification of the local statis-
tics and the use of a least squares method to the second order 2 on
the variance estimates rather than applying a first order regression
method on the standard deviation estimates (tab. 1).

The procedure of noise variance estimation was tested also on
the image [SAVOISE]. This image presents the advantage of be-
ing in its original version almost a map of regions. That enables
us to use it like a ground truth map. We chose to degrade this im-
age by first additive noise with different standard deviation levels
σb = 10, 12, 14, and then multiplicative noise with also different
standard deviation levels σn = 0.1, 0.2, 0.3. In order to test the ro-
bustness of the proposed system, we carried out tests by taking as
map of regions: the original image [truth], the results of the initial
multi-thresholding method [7], denoted herefater [Kerm], the re-
sults of the classification method by direct minimization [Sams1]
and then by alternate minimization [Sams2], all three last methods
applied on the image degraded by an additive noise σb = 14 (tab.
2).

The new approaches provide overall better results. Not so
good quality of the homogeneous regions map leads to worse re-
sults [Kerm]. It translates the sensitivity of the proposed method
to the quality of the preliminary homogeneous regions map. Good
quality of the homogeneous regions map allows us to get quasi-
perfect results [Sams2]. More, this also confirms the interest to
develop homogeneous zones detection methods robust to the noise
level. We should recall here that the noise variance is estimated si-
multaneously to the additive or multiplicative noise identification
process. It is possible to show in experiments that the noise vari-
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Detected as
Additive Multiplicative Impulse

Old New Old New Old New

additive 28 29 2 1 0 0
multiplicative 3 3 25 25 2 2

impulse 1 0 0 0 29 30

Table 1. Comparative results of the two noise identification pro-
cedures - Old:[4] - New:proposed

Additive Multiplicative
10 12 14 0.1 0.2 0.3

[T
ru

th
] Old 9.733 11.733 13.733 0.098 0.193 0.285

New 10.037 12.040 14.044 0.100 0.201 0.301

[K
e
r
m

] Old 5.315 6.184 6.344 0.048 0.183 0.290
New 5.652 6.699 7.768 0.056 0.190 0.295

[S
a
m

s
1
] Old 9.165 11.251 12.961 0.094 0.180 0.289

New 9.580 11.486 13.395 0.096 0.200 0.300

[S
a
m

s
2
] Old 9.959 11.690 14.234 0.098 0.193 0.285

New 10.080 12.067 14.060 0.101 0.202 0.302

Table 2. Comparative results of the four noise variance estimation
procedures on the image [SAVOISE]

(a) Original Image (b) Noisy Image σb = 14
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(c) Potential, Thresholds and Modes (d) Homogeneous Regions [Kerm]

(e) Homogeneous Regions [Sams1] (f) Homogeneous Regions [Sams2]

Fig. 1. Detection of Homogeneous Aeras on image [SAVOISE]
degraded by an additive noise σb = 14

ance estimate stabilizes iterations. In other words, the assumption
of the a priori knowledge of the noise variance in the procedure of
homogeneous zones detection is not a drawback.

The use of classified local statistics on regions detected as ho-
mogeneous together with the corresponding homogeneous regions
map leads to a rather significant improvement in comparison to the
previously developed (old) method. The most important contribu-
tions come from a better accurate homogeneous map and a refined
consistent use of local statistics. They lead in particular to better
robustness of the proposed joint procedure of noise identification
and estimation. Better precision of the results can be highlighted.
We can notice also the new scheme is faster and less resource-
consuming since the local statistics are never stored.

5. SUMMARY AND CONCLUSIONS

Classification of degraded images with different noise levels show
the potential of the whole system: it is rather effective for the de-
termination of homogeneous regions in an image, and allows a sig-
nificant improvement of noise identification and estimation. The
proposed method has the main advantage to be optimal and robust
to the observation noise.
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