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ABSTRACT

This paper deals with seabed imaging issued from sonar sys-

tems. Such imaging systems produce images of backscattering

(BS) strength relative to physical seabed characteristics. How-

ever, these Bs measurements are not only seabed-related but

also dependent on the incident angle. Therefore, to enhance

the quality of such seabed imaging systems, we develop an

unsupervised approach to compensate for these seabed-related

angular dependencies. Our approach combines robust estima-

tion and hidden Markov random fields. Results on real data

demonstrate the relevance of our approach to improve seabed

observation.

1. PROBLEM STATEMENT AND RELATED WORK

Sonar imaging provides a remote sensing tool to observe and

characterize the physical properties of the seafloor and is in-

creasingly exploited for a variety of applications such as en-

vironmental monitoring, marine geosciences and biology, as

well as oil industry or defense. A major challenge for sonar

imaging systems lies in the calibration of reliable instruments

for reflectivity measurement. This is a requirement for mak-

ing feasible the comparison of seafloor properties at different

locations along a single observation path as well as the moni-

toring of the changes of seafloor properties along time.

This calibration issue comes from the intrinsic character-

istics of sonar imaging systems. Since they rely on acoustic

reflection of echoes emitted by the system, reflectivity mea-

surement of the seafloor obviously depends on the incident

angle. Consequently, similar seafloor types viewed from dif-

ferent incident angles do not produce similar reflectivity mea-

surement. Calibration of reflectivity measurement is then a

major task to compensate for this angular dependencies. This

issue is indeed enhanced by the fact that these dependencies

are seafloor-related. Hence, the calibration issue is heavily

related to seafloor-based segmentation.

This paper tackles this calibration issue in the unsuper-

vised case and exploit robust estimation of backscattering mod-

els and hidden Markov models to state this issue within a

Bayesian framework. The paper is organized as follows. Sec-

tion 2 deals with Backscatter modelling and estimation, and

Section 3 presents the proposed unsupervised approach for

sonar calibration. Experimental results are reported in Sec-

tion 4.

2. BACKSCATTER MODELLING AND ESTIMATION

2.1. Characteristics of acoustic signals recorded by sonar
systems

Signals recorded by seafloor-mapping swath sonars poten-

tially provide an absolute measurement of the seafloor backscat-

tering strength as a function of incident angle. However the

measured echo level is not only dependent on the seafloor

backscattering strength (BS), but is actually affected by phe-

nomena bound to the measurement configuration (transmis-

sion range and angle), to seawater properties (absorption, re-

fraction) and to the sonar itself (array directivity patterns, re-

ceiver processing). These various factors may be summa-

rized by the classical sonar equation [5], expressed here in

dB, which states the building of the echo level as a function

of time:

EL(t) = SL + Dt[θa(t)] − 2TL[R(t)] + BS[θb(t)]

+ 10log(S[R(t), θb(t)]) + Dr[θa(t)] + PG(t)
(1)

EL(t) is the electrical signal (in dB re.1V) corresponding to

the echo level, as a function of reception time t. SL is the

source level (dB re.1Pa@1m), modulated by the transmission

directivity pattern Dt expressed as a function of angle at the

sonar arrays θa(t). R(t) is the range/time relation, and TL the

Transmission loss. The backscattering strength BS, seafloor

dependent, also strongly depends on the signal frequency and

moreover on the incident angle θb(t) on the seafloor. Scat-

tering area S is bound both to the sonar parameters (beam

aperture, signal duration) and the range/angle/time relations.

Dr is the array directivity patterns on reception. Finally, PG
is the sonar receiver processing gain featuring both constant

terms (linked to various stages of pre-amplification and filter-

ing) and a time variation.

Among these different components of the received echo

level, all except the backscattering strength BS are mainly re-

lated to the characteristics of the exploited sonar system. Pre-

vious work [1, 4] have proposed post-processing steps to deal
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Fig. 1. Illustration of the characteristics of BS images for seabed imaging: from left to right, BS image involving two seafloor
types; associated map of incident angles; plot of the BS measure as a function of the incident angles for both seaflor types.

with these components. Fig.1 displays an example of such a

post-processed BS image. This image conveys meaningful in-

formation about the physical properties of the seafloor. How-

ever, as noted previously and stressed by Fig.1, this measure

is dependent on the incident angle. More precisely, BS val-

ues are characterized by a specular component (high values)

for incident angles close to 0 degree and decrease when the

incident angle increases. Consequently, the same seafloor re-

gion viewed at different incident angles does not resort to the

same BS map. The need for compensating for this bias is ob-

vious. It is however a difficult task since the relation between

the BS value and the incident angle is seafloor dependent as

illustrated by Fig.1.

2.2. BS modeling

A variety of models have been proposed [5] to model the evo-

lution of the mean BS measure as a function of the incident

angle for a given seafloor. In this work, we rely on a trade-off

between the complexity of the model and its ability to account

for a wide range of seafloor configurations. Following [5], the

considered model is stated as the sum of a specular compo-

nent and of a generalized Lambert’s law:

BSΨ(θ) = 10log10

(
10−A exp(−Bθ2) + 10−C cosD(θ)

)
(2)

In the subsequent, Ψ will denote the set of model parameters

(A, B, C, D).

2.3. Robust sequential estimation

Let us assume that we are given with a set of BS measure-

ments {BSi}i associated with incident angles {θi}i. We fur-

ther assume that τSi is the likelihood that the BS measure BSi

is relative to a given seafloor type S. Hence, the estimation of

BS model ΨS for seafloor type S is stated as the minimization

of the following robust criterion:

Ψ̂S = arg min
ΨS

∑
i

τSi · ρ [BSi − BSΨS
(θi)] (3)

rho is a robust function, such as the Leclerc estimator [3]:

ρ(r) = 1 − exp(−r2/σ2
R), where σ is a scale parameter.

Equivalently, this robust minimization is solved for using an

weighted iterated least-square procedure, which iterates two

steps: 1) the computations of robust weights for the current

estimate ΨS :

ωi = φ(BSi − BSΨS
(θi)) (4)

where φ is the influence function φ(r) = ρ′(r)/r; 2) the min-

imization of the following quadratic criterion for the updated

robust weights ωii:

Ψ̂S = arg min
ΨS

∑
i

τSi · ωi · [BSi − BSΨS
(θi)]

2
(5)

Rather than directly solving for this quadratic criterion us-

ing a gradient-based or incremental approach, we adopt a se-

quential scheme. It comes to alternately updating specular

and Lambert components. More precisely, for given parame-

ters of the specular component, the parameters of the Lambert

component are updated as the solution of the following crite-

rion:

Ψ̂L,S = arg min
ΨL,S

∑
i

τSi ·ωi ·
[
B̃S

spec

i − BSΨL,S
(θi)

]2

(6)

where ΨL,S is the BS model issued from the Lambert com-

ponent of model ΨS , B̃S
spec

i the residual when compensat-

ing for the current estimate of the specular component. Since

model ΨL,S is linear w.r.t. parameters C and D, the up-

dated model parameters Ψ̂L,S are exactly computed as a least-

square solution:

Ψ̂L,S =

[∑
i

τSiωiZi
T Zi

]−1 ∑
i

τSiωiB̃S
spec

i Zi (7)

where Zi = [1 θ2
i . We proceed in a similar way to update

the parameters of the specular component given the Lambert

component. We iterate this robust sequential estimation until

convergence.

To improve the convergence properties of this robust es-

timation scheme, scale parameter σR is initially set to 1.57 ∗
med({ri}), where {ri} are the residuals relative to the initial

least-square parameter estimate. This scale parameter is then

decreased according to a geometrical law.
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3. BAYESIAN COMPENSATION FOR
SEABED-RELATED ANGULAR DEPENDENCIES

We aim at removing the effects of the incident angles in the

measure of the backscattering strength. Since these effects

are seabed-related, this compensation can be regarded as a

segmentation issue w.r.t. seabed types. More precisely, given

a set of seabed types {S1, ..., Sn}, our goal is to estimate the

posterior likelihood of the map of the seabed types given the

observed BS image. Let us denote by x the map of the seabed

types and BS the map of BS measures associated with the

map of incident angles θ, we aim at evaluating the following

posterior likelihood for any pixel p and seabed type S:

τp,S = P (xp = S|BS; θ; xq, q �= p) (8)

Given these posterior likelihoods, the compensated BS image

can be estimated as:

BScomp(p) = BSp −
∑

k

τp,Sk

(
BSΨSk

(θp) − CSk

)
(9)

where
∑

k τp,Sk

(
BSΨSk

(θp) − CSk

)
stands for the expecta-

tion of the angular dependency at pixel p, when the reference

BS level is set to the value of Lambert’s component {CSk
}at

incident angle 0.

3.1. Markovian setting and Gibbs sampling

In order to evaluate posterior likelihoods τp,S , we resort to a

Markovian setting [2]. Assuming that x is a Markov random

field with a 4-neighborhood structure and that BS measures

BSp are independent conditionally to xp, τp,S can be written

as:

τp,S ∝ P (BSp|xp = S, θp)P (xp = S|xq, q �= p) (10)

Data-driven P (BSp|xp = S, θp) term is evaluated as the Gaus-

sian likelihood of residual BSp − BSΨSk
(θp):

P (BSp|xp = S, θp) =

exp

(
− (BSp − BSΨS

)2

2σ2
S(θp)

)
√

2πσ2
S(θp)

(11)

where σS(θp) is the angle-dependent standard deviation of

the Gaussian error model for seabed type S. The data-driven

model involves such angle-dependent standard deviation, since

it has been observed experimentally that the distribution of the

calibrated BS measurements errors vary over angles.

The a priori Markovian model set on x leads to:

P (xp|xq, q �= p) = P (xp|xq, q ∈ Vp)

∝ exp

⎡⎣−γ
∑
q∈Vp

δ(xp − xq)

⎤⎦ (12)

where Vp are the four neighbors of pixel p, δ the Dirac func-

tion and γ the regularization coefficient which balances the

relative influences of the regularization term and of the data-

driven term.

The overall model is then parametrized by the set of seabed

BS models {ΨS , σS} and the regularization weight γ. Given

these parameters, posterior likelihoods τp,S are estimated us-

ing the Gibbs sampler [2]. From an initial label map x0, it

comes to generate a sequence of maps {xk}. At iteration k,

xk is first initialized to xk−1. Then, for each pixel p, seabed

label xk(p) is randomly selected within {S1, ...., SN} accord-

ing to likelihoods P
(
xk

p = S|BS; θ; {xk
q , q ∈ Vp}

)
given by

Eq. 10. From the sequence of label maps {xk}, posterior τp,S

is estimated as an empirical average:

τp,S =
#{k ∈ [N1, N2], xk(p) = S}

N2 − N1 + 1
(13)

where #A is the cardinality of set A. N2 is the length of the

sequence generated by the Gibbs sampler and N1 the number

of iterations needed to reach the stationarity.

3.2. Unsupervised compensation

The compensation scheme defined by Eq. 9 as well as the

Gibbs sampler require to explicitly define the BS models. As-

suming that the number of seabed types is known, the com-

pensation is then an unsupervised issue where we need to

jointly achieve the estimation of the parameters of the BS

models and the compensation. To solve for this unsupervised

issue, we exploit an ICE (Iterative Conditional Estimation)

procedure [6]. At iteration k, this procedure involves two

steps:

• step 1 : For current model parameters {Ψk
S , σk

S}, pos-

teriors τk
p,S are estimated using the Gibbs sampler (cf.

Eq.13). Note that, as initialization, we provide the last

map of the Gibbs sequence generated at iteration k−1.

• step 2 : Model parameters {Ψk
S , σk

S} are updated from

current posterior estimates τ k
p,S as stated by Eq. 7. Fol-

lowing a non-parametric approach, standard deviation

models σk
S are updated as weighted averages of the cur-

rent residuals, with weights computed as the products

of the posteriors and a Gaussian angular kernel to ac-

count for angular dependencies.

In order to achieve a better convergence of the Gibbs sam-

pler, we adopt a multiresolution strategy. From a Gaussian

pyramid of the initial BS and angular maps, we iterate the ICE

procedure from the coarsest resolution to the finest one. The

initialization of the Gibbs sampler at each resolution is issued

from the last seabed map generated at the previous resolution.

At the coarsest resolution, the initial model parameters

{Ψ0
S , σ0

S} are given by an EM-based estimation of the pa-

rameter of a mixture models of BS models. In addition, to
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Fig. 2. Example of unsupervised BS (Backsctarreing Strength) compensation: from left to right, original BS map involving two
seafloor types, segmentation map issued from the estimated posterior likelihood, compensated BS image.

increase the robustness of the proposed scheme, the first ICE

steps are carried out with simpler BS models accounting only

for Lambert’s components. The specular components are in-

troduced after a predefined number of iterations.

At final iteration and finest resolution, the compensated

BS map is finally computed from updated posteriors τ K
p,S as

given by Eq. 9 .

4. EXPERIMENTS

We have carried out experiments with real BS observations

acquired by a sonar imaging system. We report in Fig. 2 an

example including the original images, the segmentation map

given by x̂p = arg maxS τp,S and the compensated BS map.

This example shows how the proposed unsupervised compen-

sation scheme can improve the visualization of seafloor char-

acteristics. The specular component is clearly identified by

the very bright vertical zone corresponding to low incident

angles, whereas regions on both sides of the image (i.e., rela-

tive to greater incident angles) tend to be darker. The reported

segmentation map illustrates that the proposed unsupervised

scheme succeeds in identifying the meaningful seafloor mod-

els. The estimated BS models are displayed in Fig.3. The

compensated BS image permits to better visualize and com-

pare the reflectivity measurements within and between each

seafloor region.
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Fig. 3. Estimated BS models for the sonar image displayed in
Fig.2: each color refers to one model with the associated BS
data.

Original image Compensated image

Fig. 4. Comparison of the original BS map and of the com-
pensated one for two subregions of the example reported in
Fig. 2.

The zoom on two regions of the BS map, displayed in

Fig;4 further stresses the enhancement brought by our scheme.

As an additional relevant feature, it also removes artifacts, ap-

pearing as horizontal lines, which are due variations of the

incident angles along the path of the sonar systems caused

by pitch and roll. Since the proposed compensation produces

calibrated reflectivity measures, these observation artifacts are

removed.
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