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ABSTRACT

Classification of hyperspectral remote sensing data with sup-
port vector machines (SVMs) is investigated. SVMs have
been introduced recently in the field of remote sensing image
processing. Using the kernel method, SVMs map the data into
higher dimensional space to increase the separability and then
fit an optimal hyperplane to separate the data. In this paper,
two kernels have been considered. The generalization capa-
bility of SVMs as well as the ability of SVMs to deal with
high dimensional feature spaces have been tested in the situ-
ation of very limited training set. SVMs have been tested on
real hyperspectral data. The experimental results show that
SVMs used with the two kernels are appropriate for remote
sensing classification problems.

1. INTRODUCTION

With the development of remote sensing sensors, hyperspec-
tral remote sensing images are now widely available. They
are characterized by hundreds of spectral bands. For a clas-
sification task, the increased dimensionality of the data in-
creases the capability to detect various classes with a better
accuracy. But at the same time, classical classification tech-
niques are facing the problem of statistical estimation in high
dimensional spaces. Due to the high number of features and
small number of training samples, reliable estimation of sta-
tistical parameters is difficult [1]. Furthermore, it is proved
that, with a limited training set, beyond a certain limit, the
classification accuracy decreases as the number of features in-
creases (Hughes phenomenon [2]). Recently, support vector
machines (SVMs) have shown to be well suited for high di-
mensional classification problems [3, 4]. With SVMs, classes
are not characterized by statistical criteria but by a geometri-
cal criterion. SVMs seek a separating hyperplane maximizing
the distance to the closest training samples for two classes.
This approach gives SVMs very high generalization capabil-
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ities and, as a consequence, they only require a small num-
ber of training samples. In addition, for non linearly separa-
ble data, SVMs use the kernel method to map the data onto
a higher dimensional space where they are linearly separa-
ble [5].
Early work in classification of remotely sensed images by
SVMs showed promising results [6, 7]. In [8], several SVM-
based classifiers were compared to other classical classifiers
such as a K-nearest neighbors classifier and a neural network
classifier. The SVMs using the kernel method outperformed
the other classifiers in terms of accuracy. Multiclass SVMs
performances were also positively compared with a discrimi-
nant analysis classifier, a decision tree classifier and a feedfor-
ward neural network classifier with a limited training set [9].
Though these experiments highlight the good generalization
capability of SVMs, the data used were pre-processed, i.e., 3
selected bands were used for the classification and thus, per-
formances in high dimensional space were not investigated.
In both articles [8, 9], the Gaussian radial basis kernels were
shown to produce the best results. In [10], several spectral-
based kernels were tested on hyperspectral data. These ker-
nels were designed to handle spectral meaning, and, in partic-
ular, various non-Euclidean metrics were considered to char-
acterize the similarity between vectors.
In this paper, multiclass SVMs are investigated for the clas-
sification of hyperspectral data without any feature reduction.
Two kernels are compared : The first one is based on Eu-
clidean distance. It is the Gaussian radial basis with L2-norm
distance. The second one is based on spectral angle mapper.
It basically computes the angle between two vectors in the
vector space. The spectral angle is known to be scale invari-
ant and thus a good measure of spectral shape [10, 11].
The generalization capability is also studied in the case of a
limited training set. Global and average accuracies as well as
Kappa coefficient of agreement are used for evaluation and
comparison.
The paper is organized as follows. SVMs are briefly presented
in Section 2. Data and experimental scheme are outlined in
Section 3. Experimental results are discussed in Section 4.
Finally, conclusions are drawn.
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2. SUPPORT VECTOR MACHINES

In this section we briefly recall the general mathematical for-
mulation of SVMs. Starting from the linearly separable case,
optimal hyperplanes are introduced. Then, the classification
problem is modified to handle non-linearly separable data and
a brief description of multiclass strategies is given. Kernel
methods are discussed and the kernels used in the experiments
are presented.

2.1. Linear SVMs

For a two-class problem in a n-dimensional space R
n, we as-

sume that N training samples, xi ∈ R
n, are available with

their corresponding labels yi = ±1: {(xi, yi) | i ∈ [1, N ]}.
The SVM method consists of finding the hyperplane that max-
imizes the margin (see Fig. 1), i.e, the distance to the closest
training data points in both classes. Noting w ∈ R

n as the
vector normal to the hyperplane and b ∈ R as the bias, the
hyperplane Hp is defined as

w · x + b = 0, ∀x ∈ Hp (1)

where w · x is the dot product between w and x. If x /∈ Hp

then f(x) = w · x + b is the distance of x to Hp. According
to the previous statement, such a hyperplane has to satisfy:

yi(w · xi + b) > 1, ∀i ∈ [1, N ]. (2)

Finally, the optimal hyperplane has to maximize the margin:
2/ ‖w‖. This is equivalent to minimizing ‖w‖ /2 and leads to
the following quadratic optimization problem:

min

[
‖w‖

2

2

]
, subject to (2). (3)

For non-linearly separable data, slack variables ξ are intro-
duced to deal with misclassified samples (see Fig. 1). Eq. (2)
becomes

yi(w · xi + b) > 1 − ξi, ξi ≥ 0 ∀i ∈ [1, N ]. (4)

The final optimization problem becomes:

min

[
‖w‖

2

2
+ C

N∑
i=1

ξi

]
, subject to (4) (5)

where the constant C controls the amount of penalty. These
optimization problems are usually solved by quadratic pro-
gramming [3].

As a conclusion, the SVM training process consists of
seeking the optimal hyperplane from one training set. The
classification is done by yu = sgn(w · xu + b) where (w, b)
are the hyperplane parameters found during the training pro-
cess and xu is an unseen sample.

Fig. 1. Classification of a non-linearly separable case by
SVMs. There is one non separable feature vector in each
class.

2.2. Multiclass SVMs

SVMs are designed to solve binary problems where the class
labels can only take two values: ±1. For a remote sens-
ing application, several classes are usually of interest. Var-
ious approaches have been proposed to address this problem.
They usually combine a set of binary classifiers. Two main
approaches were originally proposed for a m-classes prob-
lem [5].

• One Versus the Rest: m binary classifiers are applied
on each class against the others. Each sample is as-
signed to the class with the maximum output.

• Pairwise Classification: m(m−1)
2 binary classifiers are

applied on each pair of classes. Each sample is assigned
to the class getting the highest number of votes. A vote
for a given class is defined as a classifier assigning the
pattern to that class.

The pairwise classification has shown to be more suitable
for large problems [12]. Even though the number of the used
classifiers is larger than for the one versus the rest approach,
the whole classification problem is decomposed into much
simpler ones. Therefore, this second approach was used in
our experiments.

2.3. Nonlinear SVMs

Kernel methods are a generalization of SVMs providing non-
linear hyperplanes and thus improving classification abilities.
Input data are mapped onto a higher dimensional space H us-
ing a nonlinear function Φ:

R
n → H

x → Φ(x)
xi · xj → Φ(xi) · Φ(xj).

(6)
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The expensive computation of Φ(xi) · Φ(xj) in H is reduced
using the kernel trick [5]:

Φ(xi) · Φ(xj) = K(xi, xj) (7)

The kernel K should fulfill Mercer’s condition [4]. Using ker-
nels, we never explicitly work in H, and all the computations
are done in the original space R

n.
For classification of remote sensing images, two kernels are
widely used: the inhomogeneous polynomial function and the
Gaussian radial basis function (RBF).

KPOLY (xi, xj) = [(xi · xj) + 1]p. (8)

KGAUSS(xi, xj) = exp
[
−γ ‖xi − xj‖

2
]
. (9)

RBF can be written as follows [5]: K(xi, xj) = f(d(xi, xj))
where d is a metric on R

n and f is a function on R
+
0 . For the

Gaussian RBF, f(t) = exp(−γt2), t ∈ R
+
0 , and d(xi, xj)) =

‖xi − xj‖, i.e., the Euclidean distance. As mentioned in [11],
Euclidean distance is not scale invariant, however due to at-
mospheric attenuation or variation in illumination, spectral
energy can be different for two samples even if they belong
to the same class. To handle such a problematic case, scale
invariant metrics can be considered. Spectral Angle Mapper
(SAM) is a well known scale invariant metric, it has been
widely used in many remote sensing problems and it has been
shown to be robust to variations in spectral energy [11]. This
metric α focuses on the angle between two vectors:

α(xi, xj) = arccos

(
xi · xj

‖xi‖ . ‖xj‖

)
. (10)

In this paper, we compare RBF kernels with the Euclidean
distance (9) and the spectral angle mapper (11).

KSAM (xi, xj) = exp
[
−γα(xi, xj)

2
]
. (11)

Both kernels fulfill Mercer’s conditions and optimal hyper-
planes can therefore be found.

3. DATA AND CLASSIFICATION SCHEME

The data used in the experiments are ROSIS (Reflective Op-
tical System Imaging Spectrometer) provided by DLR. These
data are very high-resolution hyperspectral data. The used
imagery is of Pavia, Italy. It is 492 by 1096 pixels and con-
tains 102 spectral bands. A three-color composite image is
shown in Fig. 2.(a). Training and test sets are listed in Table 1.
Small training sets were randomly extracted from the training
set and were composed of 10, 20, 40, 60, 80 and 100 pixels
by class, respectively. The SVMs were trained with each of
these training subsets and then evaluated with the whole test
set. These experiments were repeated five times (with five
independent training subsets) and the mean accuracy values

Table 1. Information classes and samples.
Class Samples

No Name Train Test

1 Water 745 65278
2 Trees 785 6508
3 Meadow 797 2900
4 Brick 485 2140
5 Soil 820 6549
6 Asphalt 816 7555
7 Bitumen 808 6479
8 Tile 223 3122
9 Shadow 195 2165

Total 5536 103504

(a) (b) (c)

Fig. 2. (a) Original hyperspectral image, three-channel color
composite. (b) Thematic map produced with the Gaussian
RBF kernel SVMs with 10 training pixels by class. (c) The-
matic map produced with the SAM RBF kernel SVMs with
10 training pixels by class.

were reported. During each training process, the kernel pa-
rameter γ and the penalty term C were adjusted to maximize
the estimated overall accuracy, which was computed using a
fivefold cross validation [5]. The SVMs were computed us-
ing the LIBSVM library [13] and the program was modified
to include SAM kernel.

4. EXPERIMENTS

Table 2 summarizes the results obtained using the Gaussian
and the SAM RBF kernels. These values were extracted from
the confusion matrix [14]. The overall accuracy (OA) is the
percentage of correctly classified pixels whereas the average
accuracy (AA) represents the average of class classification
accuracies. Kappa coefficient is another criterion classically
used in remote senig classification to measure the degree of
agreement [14] and takes into account the correct classifica-
tion that may have been obtained ”by chance” by weighting
the measured accuracies.
SVMs generalizes very well: with only 10 training pixels per

II  815



Table 2. Classification Accuracies for the Gaussian and the
SAM RBF kernel.

Training Set OA% AA% Kappa Coef.
Size Gaussian SAM Gaussian SAM Gaussian SAM

10 93,85 93,32 88,76 86,36 0,90 0,89
20 94,51 93,87 91,00 88,64 0,91 0,90
40 94,51 93,79 92,66 91,26 0,92 0,90
60 94,71 94,23 92,04 91,67 0,91 0,90
80 95,36 94,40 93,24 91,89 0,92 0,90
100 95,29 94,54 93,39 92,61 0,92 0,91

All 96,45 95,56 95,08 94,26 0,94 0,93

class more than 90% accuracy is reached by both kernels. It
is also clear that the classification accuracy is correlated to
the training set size. But the difference in terms of accuracy
is fairly low: for instance, with the Gaussian RBF kernel, the
OA obtained with only 10 training pixels per class is only
2, 7% lower than the OA obtained with the complete training
set. However, the computation time (including optimal pa-
rameters selection, training and classification) requires only
about 10 minutes with 10 training pixels compared to more
than 12 hours with the full training set.
The use of the SAM kernel gives slightly degraded classi-
fication results for the OO, OA and the Kappa coefficient.
However, with most of the accuracies over 90%, this kernel
seems also promising for the classification of hyperspectral
remote sensing images. Thematic maps provided by SVMs
classification with the Gaussian and SAM kernel are shown
in Fig. 2.(b) and (c), respectively.

5. CONCLUSIONS

In this paper, the classification of hyperspectral remote sens-
ing data using support vector machines was investigated. SVMs
proved to provide very accurate classification, even in the case
of a very limited number of training sample and high dimen-
sional data. Two kernels have been compared, the well known
Gaussian RBF kernel and a kernel based on the spectral angle
mapper. From our experiments, both gave excellent results in
terms of classification accuracy, the Gaussian kernel slightly
outperforming the SAM kernel. An explanation lies in the fact
that urban scenes are less sensitive to spectral variations than
agricultural areas, with weeds at various development steps
and different layers casting shadows. A perspective of this
work surely lies in the combination of these kernels to further
improve the classification results using decision fusion.
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