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ABSTRACT

It is now well established that synthetic aperture imaging ra-
diometers are powerful sensors for high-resolution observa-
tions of the Earth at low microwave frequencies. This article
deals with the reconstruction of radiometric brightness tem-
perature maps from interferometric measurements. The cor-
responding inverse problem is often ill-posed unless a regu-
larizing constraint is introduced in order to provide a unique
and stable solution. Standard regularizing approaches are pre-
sented, the corresponding solutions are analyzed and the links
between their physical and mathematical meanings are es-
tablished. To support the theory, numerical simulations are
presented and analyzed with emphasis on stability and error
analysis.

1. INTRODUCTION

Synthetic Aperture Imaging Radiometers (SAIR) are power-
ful instruments for high-resolution observation of planetary
surfaces at low microwave frequencies. This article is de-
voted to the reconstruction of radiometric brightness temper-
ature maps from SAIR interferometric measurements. It has
been demonstrated that the corresponding inverse problem is
not well-posed, unless a regularizing constraint is introduced
in order to provide a unique and stable solution. Since SAIR
belong to the family of band-limited imaging devices, such a
physical property should certainly be taken into account in the
regularization of the imaging problem. However, other regu-
larizing methods could achieve the same results, even if their
physical meaning is somewhere hidden by the mathematical
foundations. This contribution makes a review of standard
methods for the regularization of inverse problems in imaging
radiometry by aperture synthesis: the regularized solutions in
the sense of Tikhonov, the solutions with minimal energy and
those with band-limited properties are analyzed and the links
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between their physical and mathematical meanings are estab-
lished. To support the theory, numerical simulations are pre-
sented within the frame of the SMOS space mission, a project
led by the European Space Agency and devoted to the remote
sensing of Soil Moisture and Ocean Salinity from a low orbit
platform [1]. Results are analyzed with emphasis on stability
and error analysis.

1.1. Direct problem

SAIR devoted to Earth observation measure the correlation
between the signals collected by pairs of spatially separated
antennae Ak and Al which have overlapping fields of view,
yielding samples of the visibility function V (u), also termed
complex visibilities, of the brightness temperature map T (ξ)
of the observed scene. The relationship between V (u) and
T (ξ) is given by a spatial Fourier-like integral [2]:

V (ukl) ∝ 1√
ΩkΩl

∫∫
‖ξ‖≤1

Fk(ξ)F l(ξ)T (ξ)

× r̃kl(
−uklξ

fo
) e
−2jπuklξ dξ√

1 − ‖ξ‖2 .

(1)

The components ξ1 = sin θ cosφ and ξ2 = sin θ sinφ of the
angular position variable ξ are direction cosines (θ and φ are
the traditional spherical coordinates), ukl is the spatial fre-
quency associated with the two antennae Ak and Al (namely,
the spacing between the antennae normalized to the central
wavelength of observation), Fk(ξ) and Fl(ξ) are the normal-
ized voltage patterns of the antennae with equivalent solid an-
gles Ωk and Ωl (the overbar indicates the complex conjugate),
r̃kl(t) is the so called fringe-wash function which accounts
for spatial decorrelation effects, t = uklξ/fo is the time de-
lay and fo is the central frequency of observation.
Denoting by � the number of antennae of the instrument, the
number of complex visibilities provided by the interferome-
ter is equal to �(� − 1)/2 when accounting for the hermitian
property of (1). However, the list of spatial frequencies ukl

is not necessarily non redundant since two different pairs of
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antennae may lead to the same spatial frequency.
Since SAIR have limited dimensions, the spatial frequencies
ukl sampled by an interferometer are confined to a limited
region of the Fourier domain, the so-called experimental fre-
quency coverage H . Moreover, in many applications they co-
incide with the nodes of a sampling grid Gu. For example,
in the case of SMOS the visibility samples are obtained from
raw data inside a star-shaped window over an hexagonally
sampled grid in the Fourier domain [1].
For computation purposes, numerical quadrature is used to
represent integral (1) as a summation over n2 integrand sam-
ples, here the n2 pixels of the spatial grid Gξ which is the
dual grid of Gu. The number of pixels of the grids Gu and Gξ

has to be chosen in such a way that the Shannon criterion is
satisfied and the numerical quadrature is sufficiently accurate.

1.2. Inverse problem

The inverse problem aims at inverting the discrete version of
relation (1) to retrieve the radiometric brightness temperature
map T from the complex visibilities V , i.e. solving the linear
system:

GT = V, (2)

where G is the discrete (linear) operator from the object space
E into the data space F describing the basic relation (1).
Since the direct problem is stated via an integral equation, the
inverse problem does not usually have a straightforward solu-
tion. Moreover, since the dimension of the object space E
(here the n2 pixels used to sample T ) is often larger than
the dimension of the data space F (the �(� − 1)/2 samples
of V ), the linear system (2) is an underconstrained problem
with multiple solutions for T . The minimum of the least-
square criterion

min
T∈E

‖V − GT ‖2
F , (3)

is also the solution of the normal equation G∗GT = G∗V .
This solution is not unique because the square matrix G∗G is
singular. According to the definition given by Hadamard [3],
the inverse problem is ill-posed and has to be regularized in
order to provide a unique and stable solution for T .

2. REGULARIZATION

The problem of retrieving an estimate Tr of the radiometric
temperature distribution T of a scene under observation from
complex visibilities V has been addressed in [4][5][6]. It has
been demonstrated that this inverse problem is ill-posed and
has to be regularized in order to provide a unique and sta-
ble solution. Two standard “numerical regularizations” and a
“physical regularization” are presented here.

2.1. Tikhonov regularization

A standard approach is to find the brightness temperature map
Tr that realizes the minimum of the quadratic functionnal [3]

min
T∈E
µ∈R

‖V − GT ‖2
F + µ‖T ‖2

E (4)

where µ is a Lagrange parameter to be determined prior in-
version. For µ = 0 we obtain the discrepancy functionnal (3).
The unique solution of (4) is the solution of the Euler equa-
tion (G∗G + µI)T = G∗V which has to be compared to
the normal equation G∗GT = G∗V associated to the least-
square criterion (3). This map could be obtained through the
computation of the inverse of the non singular square ma-
trix G∗G + µI:

Tr = G+
µ V, (5)

where:
G+

µ = (G∗G + µI)−1G∗. (6)

The drawback of this numerical approach is the regularization
parameter µ because the determination of its optimal value
may raise some difficulties.

2.2. Minimum-norm regularization

A second standard approach is to find the minimum-norm so-
lution of (2) by means of computing the temperature map
Tr that realizes the minimum of the constrained optimization
problem [4][5] {

min
T∈E

‖T ‖2
E

GT = V
(7)

This map could be obtained through the computation of the
More-Penrose pseudo-inverse G+ of the rectangular matrix
G:

Tr = G+V, (8)

where G+ could be computed with the aid of a standard sin-
gular value decomposition [7] of G:

G+ =
∑
i≥1

1
σi

viuT
i . (9)

Here, the σi’s are the singular values of G, written in ascend-
ing order, associated to the left and right singular vectors u i

and vi. Owing to the particular role played by the smallest σ i

in the computation of G+, with (9) or with the well-known
expression G∗(GG∗)−1, it is preferable to compute it with
the aid of a truncated singular value decomposition [6][7]

G+
m =

∑
i>m

1
σi

viuT
i , (10)

so that the regularized minimum-norm solution of (2) is now
given by:

Tr = G+
mV, (11)
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where m indicates the number of singular values σ i discarded
prior to inversion. Here again, the drawback of this approach
is the choice of the optimal value for m which plays the role
of a numerical regularization parameter.

2.3. Band-limited regularization

Referring now to a physical concept, namely the limited res-
olution of SAIR, another approach is to find the temperature
map Tr which has its Fourier transform confined to the exper-
imental frequency coverage H . This band-limited solution
realizes the minimum of the constrained optimization prob-
lem [6] {

min
T∈E

‖V − GT ‖2
F

(I − PH)T = 0
(12)

where PH is the projector onto the subspace E (of E) of
the H-band limited functions [6]. The unique solution of (12)
is given by:

Tr = U∗ZA+V, (13)

where:
A+ = (A∗A)−1A∗ (14)

is the More-Penrose pseudo-inverse of the rectangular matrix
A = GU∗Z, U is the Fourier transform operator and Z is
the zero-padding operator beyond H [6].

3. SIMULATIONS AND RESULTS

Simulations have been performed for a Y-shaped array equip-
ped with 3 antennae per arm in addition to the central one,
leading to a total number of antennae and receivers � = 10.
The available number of complex visibilities is here equal to
�(� − 1)/2 = 45, while there are only 36 spatial frequencies
in the star-shaped coverage H . The dimension of the hexag-
onally sampled grids Gξ and Gu has been fixed to n2 = 256.
The object workspace E is thus isomorphic to R256. Only
one measurement of the visibility function for the zero spac-
ing V (0) is included in the modelling operator G. The dual
space Ê and the data space F are therefore isomorphic to the
complex spaces C36+1 and C45+1. However it is more conve-
nient to work in the underlying real spaces R73 and R91. The
size of the real-valued matrices G and A are therefore 91 ×
256 and 91 × 73, showing that the linear system (2) is un-
derdetermined while the least-square criterion (12) is over-
constrained thanks to the 45 − 36 = 9 redundant complex
visibilities.
The eigenvalues of the real valued square matrices G∗G and
G∗G+µI for µ = 10−6 are shown in Fig. 1. According to the
floating point relative accuracy of MATLAB (ε ≈ 2 · 10−16),
the 165 smallest eigenvalues on the left side of the spectrum
should be considered as equal to 0. The number of remain-
ing positive eigenvalues is therefore equal to 91, which is the
rank of G. As a consequence, the matrix G∗G is singular.
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Fig. 1. The 256 eigenvalues of the 256 × 256 matrices G∗G
(top) and G∗G + µI for µ = 10−6 (bottom).
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Fig. 2. The 91 singular values of the 91× 256 matrix G (top)
and the 73 singular values of the 91 × 73 matrix A (bottom).

This is not the case of the matrix G∗G+µI since its smallest
eigenvalue is equal to µ.
The singular values of the real valued rectangular matrices G
and A are shown in Fig. 2. Both matrices are of full-rank and
positive definite. However, it is to be noted that the 73 singu-
lar values of A are of the order of unity. Conversely, the 18
smallest singular values of G (corresponding to the 9 redun-
dant complex visibilities), out of a total of 91, vary from 10−2

down to 10−4. This suggests to compute G+ with the aid of a
truncated singular value decomposition so that these m = 18
singular values are discarded prior to inversion, keeping only
the 91 − 18 = 73 largest ones which correspond to the spa-
tial frequencies in the frequency coverage H associated to the
unknowns of the overconstrained problem (12).

Complex visibilities have been simulated from a bright-
ness temperature T at its highest level of resolution for an
instrument with non identical subsystems (different antennae
voltage patterns and different receivers band-pass filters). and
a random radiometric noise ∆V with standard deviation
σ∆V = 0.1 K has been added on both the real and imaginary
parts of V . Reconstructions have been performed in order to
compare the Tikhonov solution (5), the regularized minimum-
norm solution (11) and the band-limited one (13). Provided
that the optimal values for µ and m are used, it turns out that
the three methods have the same behaviour with regards to the
error propagation: the average factor of noise amplification is
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of the order of 0.54 K/K [6].
Concerning the Tikhonov regularization, the choice of the op-
timal value for the Lagrange parameter µ is a crucial and dif-
ficult problem in the theory of regularization. However, one
way to find this value is to plot ‖V − GTr‖F versus ‖Tr‖E

for different values of µ. These variations are shown in Fig. 3
for 10−8 ≤ µ ≤ 10−1. As predicted by the theory, the plot
has the shape of the letter L (hence the name of “L-curve”).
The optimal value for µ corresponds to the point with maxi-
mum curvature (i.e. the corner of the L-curve) because it is
the best compromise between approximation error and noise
propagation. Here it is about 10−6 (hence the previous choice
of µ in Fig. 1), however this value may depend on the amount
of input noise ∆V (here, σ∆V = 0.1 K).
Regarding the minimum-norm regularization, the choice of
the number m of singular values σi discarded prior to inver-
sion is also a crucial issue. The variations of ‖V − GTr‖F

with ‖Tr‖E have been reported on Fig. 3 for 1 ≤ m ≤ 32. It
is worthy of note that the plot has also a L-shaped behaviour
and the maximum curvature point, which is very close to the
point of the optimal value for µ, corresponds to m = 18. The
number of singular values kept in the inversion is therefore
equal to 91 − 18 = 73 which is also the previous value sug-
gested by the singular values spectrum shown in Fig. 2.
Finally, we have reported the same quantities for the band-
limited solution on the previous L-curves. It can be observed
that this point is also very close to the points corresponding
to the optimal values for µ and m, which confirms the link
between the three approaches, this one having the advantage
to have a physical meaning and to be independant from any
regularizing parameter.
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Fig. 3. Variations of ‖V − GTr‖F with ‖Tr‖E for the
Tikhonov solution (5) with 10−8 ≤ µ ≤ 10−1 (solid line
and ), the regularized minimum-norm solution (11) with
1 ≤ m ≤ 32 (dashed line and ) and the band-limited solu-
tion (13) ( marker).

4. CONCLUSION

The reconstruction of radiometric brightness temperature
maps from complex visibility samples provided by SAIR has
been addressed. Since the corresponding inverse problem is
ill-posed, it has to be regularized in order to provide a unique
and stable solution. Three regularizing methods have been
examined, all leading to the same results with regards to the
propagation of random radiometric noise. Two of them, the
Tikhonov and the minimum-norm approaches, depend on a
numerical regularization parameter. The determination of its
optimal value is crucial for the behaviour of these methods
since non optimal values may lead to large amplification fac-
tors of noise. This is not the case of the band-limited ap-
proach which does not depend on such a numerical parameter
but takes into account the limited resolution of SAIR to reg-
ularize the problem. Moreover, the dimension of the system
to be solved is reduced to the minimum number of unknowns
(or degrees of freedom), the number of frequencies in the ex-
perimental frequency coverage, while taking into account, in
the least-square sense, all the available complex visibilities
without averaging the potentially redundant ones.
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