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ABSTRACT

In this paper, we propose a new scheme for realizing predesigned

two-dimensional (2-D) complex-valued seismic migration FIR digi-
tal filters, which are used for migrating three-dimensional (3-D) seis-

mic volumes. The realization is based on Singular Value Decom-

position (SVD) of such quadrantal symmetrical 2-D FIR filters. In

order to simplify the SVD computations for such impulse response
structure, we apply a special matrix transformation on the migra-

tion filter impulse responses where we guarantee the retention of

their wavenumber phase response. Unlike the existing realization

methods which are used for this geophysical application, this real-
ization via SVD results in perfect circularly symmetrical magnitude

and phase wavenumber responses. It also saves 23.08% of the num-
ber of multiplications per output sample as well as 61.54% of the
number of additions per output sample when compared to direct im-
plementation with symmetry via true 2-D convolution.

1. INTRODUCTION

One of the most important processing steps in seismic data process-

ing, known as migration, is to correct for the incorrectly positioned
appearing layers in seismic acquired sections and to obtain a depth

seismic image by the use of so called Seismic Migration filters [1, 2].
The frequency-space (or frequency-inline-crossline) (ω−x−y) mi-
gration method is considered to be one of the most attractive tech-
niques for performing seismic migration [1, 3]. The most important

feature of such a migration technique is that it can be used for migra-

tion of one-way wavefields accurately through heterogeneous media.

Also, they result in stable migration images due to the new improve-
ments in the design of these filters like the ones reported in [1, 2].

1.1. 2-D Seismic Migration for 3-D Seismic Data Volumes

Migration for 3-D seismic data sets is performed one angular fre-
quency (ωo) at a time using two-dimensional (2-D) migration filters:

Hd(e
jkx , ejky ) = exp[jb

q
k2

cp
− [k2

x + k2
y ]] (1)

where ∆x and ∆y are the in-line and cross-line spatial sampling
intervals, respectively, kx and ky stand for the in-line and the cross-

line wavenumbers, ∆z is the migration depth step size, ∆t is the
time sampling interval, co is the velocity of the geological material,

b = ∆z/∆x and, finally, kcp = ∆x
∆t

ωo

co
is the cut-off wavenum-

ber. Clearly, the desired 2-D wavenumber response has a circular

symmetry in the magnitude as well as the phase response (which
is a non-linear function). The ω − x − y migration of a spatially

sampled seismic wavefield u(xi, yj , e
jωo , zk) from depth say zk to

zk+1 = zk + ∆z is performed independently for each frequency
ωo, by a direct 2-D spatial convolution with a designed 2-D non-
causal quadrantally symmetricalN ×N (N is odd) complex-valued
migration filter impulse response h[n1, n2] using [1]:

u(xi, yj , e
jωl , zk+1) =

(N−1)/2X
n1=(−N+1)/2

(N−1)/2X
n2=(−N+1)/2

h[n1, n2] × (2)

u(xi−n1
, yj−n2

, ejωl , zk).

In this case, the migration (filtering) process is carried over all fre-

quencies ωl, where l = 0, · · · , M − 1 andM is the number of fre-

quency samples. A typical ω − x − y migration process for seismic
signals sampled at ∆t = 4 msec requires 1000 2-D filters that are
designed and stored to migrate the seismic section u(xi, yj , e

jωl , zk)
to u(xi, yj , e

jωl , zk+1). This results in performing 1000 2-D convo-
lution processes to get only one slice of the final 3-D migrated image
(wavefiled) u(x, y, z). So if one needs 500 depth slices, 500, 000 2-
D convolutions are required. Using direct convolution of these 2-D

complex-valued N ×N impulse responses, the computational com-
plexity per output sample will be 500, 000 × N2, where N is the
FIR filter length in the n1 or n2 directions. In this application, even

by taking advantage of the quadrantally symmetric property of such

2-D impulse responses, the computational complexity will still be

high [1].

1.2. State of the Art

Different approaches have been proposed to mitigate such expensive

3-D migration process which heavily relies on direct convolution of
2-D complex-valued FIR filter impulse responses like the splitting

method where the migration is performed by splitting the process

to alternatively migrate along the in-line and cross-line directions,

independently [1], i.e., assuming that the 2-D migration filters are
separable. Other realization examples used for such application are

based on the McClellan transformations [3] and its improved version

reported in [1]. All of these techniques result in stable migration im-

ages, need one-dimensional (1-D) filters, and possess, in general,
cheap computations where the number of multiplications per output

sample required are proportional to N . However, all of these real-
ization methods do not yield circularly symmetric migration filters

especially for kx ≈ ky � 0 and, therefore, they lead to significant
migration errors [1].
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Fig. 1. SVD based realization structure of the predesigned 2-D seis-
mic migration FIR digital filters.

1.3. Problem Definition: Revisited

In view of the above discussion, and as a result of the advances in

storage and processing power for computer systems, there is a need

for migrating 3-D seismic data sets with true 2-D seismic migra-
tion filters that are cheap to implement, result in stable migrated im-

ages, and possess perfectly circular symmetry with respect to their

wavenumber responses. Digital FIR filter realization techniques based

on Singular Value Decomposition (SVD) have been proposed for the

realization of 2-D zero-phase FIR digital filters [4] and, more re-
cently, for 2-D linear-phase FIR digital filters [5]. In both papers,

the predesigned 2-D FIR filters where realized with their proposed

SVD techniques for general FIR filters, including symmetrical and

anti-symmetrical ones. In general, the SVD realization structure has
several attractive advantages. It is suitable for parallel processing

[4, 5] such as the case for ω − x − y migration. Also, it is flexi-
ble in the sense that we can select the number of realization paral-

lel sections that correspond to the most significant singular values.
Hence, this results in computational complexity savings in trade-off

introduction of small errors in the wavenumber response. Finally,

depending on the number of parallel sections used in the realization,

its computational complexity is proportional to N .

1.4. Paper Contributions

In this work, the mathematical development of realizing 2-D complex-
valued quadrantal symmetrical seismic migration FIR filters which

are used for the ω−x−y 3-D migration using SVD, is shown where
we exploit the existence of insignificant singular values and discard

them while we still retain the phase response of these migration fil-
ters. In order to simplify the SVD computations for such impulse re-

sponse structure (i.e., quadrantal symmetry), we apply a special ma-

trix transformation on the migration filter impulse responses where

we guarantee the retention of their wavenumber phase response. As
a result, our proposed realization method for such geophysical appli-

cation overcomes the problems of other reported realization schemes

in terms of computational complexity, stable migrated images, and

circularly symmetrical wavenumber response.

2. SVD REALIZATION FOR 2-D COMPLEX-VALUED
SEISMIC MIGRATION FIR IMPULSE RESPONSE

Let h[n1, n1] be an already designedN×N quadrantally symmetri-
cal 2-D seismic migration FIR impulse response where h[n1, n1] ∈
C

N×N for n1, n2 = −(N − 1)/2, · · · , (N − 1)/2 and N is an odd
number. DefineA to be an N × N matrix whose elements are rep-
resenting the quadrantally symmetrical 2-D seismic migration FIR

impulse response as given by:

A = {h[n1, n1]}, for |n1, n2| ≤ (N − 1)/2. (3)

2.1. Singular Value Decomposition & FIR Realization

In general, the SVD ofA can be written as

A = UΣV
∗

(4)

where U and V are unitary matrices, ∗ denotes the complex conju-
gate transpose, andΣ is a diagonal matrix whose diagonal elements

represent the singular values ofA, i.e.,

Σ = diag(σ1, σ2, · · · , σN ) (5)

and σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0 [6]. Let the rank of A be r ≤ N .
Hence, σr+1 = σr+2 = · · · = σN = 0 and (4) can be rewritten as:

A =
rX

k=1

σkukv
∗
k =

rX
k=1

fkg
∗
k (6)

where uk and vk represent the kth column vectors of U and V,

respectively, and fk =
√

σkuk and gk =
√

σkvk. Equation (6) sug-

gests that the 2-D seismic migration FIR digital filter can be realized

using r parallel 2-D subfilters where each 2-D subfilter is composed
of a cascade of twoN -length 1-D complex-valued seismic migration
FIR digital filters. These 1-D filters have impulse responses given

by fk(n1) and gk(n2). Fig. 1 demonstrates the SVD based real-
ization structure for the migration filtering process where the imple-
mentation complexity will depend on the value of r, which is equal
to (N + 1)/2 in the case of quadrantally symmetrical impulse re-
sponses.

2.2. SVD Realization of Migration FIR Filters

For the analysis given below, we will follow [5]. Define J to be an

(N − 1)/2 × (N − 1)/2 contra-identity matrix where the contra-
diagonal elements are equal to 1 and the remaining elements are ze-
ros. Since A ∈ C

N×N possesses quadrantal symmetry and N is
odd,A can be written as:

A =

2
4 A1 a1 A1J

a∗
2 c a∗

2J

JA1 Ja1 JA1J

3
5 (7)

where A1 is an (N − 1)/2 × (N − 1)/2 matrix, a1 and a2 are
(N − 1)/2-dimensional column vectors, and c is a complex scalar.
We can easily show that the matrixQ ∈ C

N×N , which is defined as

Q =
1

2

2
4 I + jI 0 J + jJ

0
√

2 + j
√

2 0

I + jI 0 −J + jJ

3
5 (8)

is a unitary matrix. Then, we obtain a unitary matrix B ∈ C
N×N

similar toA by the relation:

B = QAQ
∗

=

2
4 A1 + JA1J

√
2

2
a1 +

√
2

2
Ja1 0√

2aT
2 2c 0

0 0 0

3
5

=

»
B1 0

0 0

–
(9)

where B1 is an (N + 1)/2 × (N + 1)/2 matrix. Note that A∗A
is also unitary and similar to B∗B with respect to Q. This implies
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that A∗A and B∗B both have the same eigenvalues and, conse-
quently, the same singular values, i.e., the matrices A and B are

unitary equivalent [6]. Now, let the SVD of B be given as:

B = UBΣBV
∗
B (10)

where UB and VB are unitary and ΣB is a diagonal matrix with

singular values in decreasing order. Based on (9), one can rewrite
(10) as:

B =

»
U1 0

0 0

– »
Σ1 0

0 0

– »
V1 0

0 0

–
(11)

where this implies that we can determine the SVD of B, by only

computing the SVD of

B1 = U1Σ1V1

=

»
U11 b1

bT
2 U0

– »
Σ11 0

0 Σ0

– »
V11 c1

cT
2 V0

–
.(12)

Thus,A can be expressed as:

A = Q
∗
BQ

= Q
∗
UBΣBV

∗
BQ

= ÛΣBV̂
∗

(13)

where

Û = Q
∗
UB

=
1

2

2
4 (I− jI)U11 (I − jI)b1 0

(
√

2 − j
√

2)b∗
2 (

√
2 − j

√
2)U0 0

(J − jJ)U11 (J − jJ)b1 0

3
5 (14)

and

V̂ = Q
∗
VB

=
1

2

2
4 (I− jI)V11 (I − jI)c1 0

(
√

2 − j
√

2)c∗
2 (

√
2 − j

√
2)V0 0

(J− jJ)V11 (J − jJ)c1 0

3
5 . (15)

As expected, only the first (N + 1)/2 columns of both (14) and

(15) are nonzero and they are symmetric. Since both Û and V̂ are

unitary and bothA and B have identical singular values, (13) gives

an SVD of A. Finally, the SVD of A can be represented based on

(13), where the uk’s and vk’s are replaced respectively with the first
(N + 1)/2 columns of Û (ûk’s) and V̂ (v̂k’s), respectively.

We now want to discard insignificant singular values and, there-

fore, reduce the number of parallel sections required to realize our

migration FIR filters. That is, we want to approximate A by:

AK =
KX

k=1

σkûkv̂
∗
k

KX
k=1

= f̂kĝ
∗
k (16)

whereK < (N +1)/2. In this case, the number of parallel sections
in Fig. 1 are reduced and this results in significant savings in terms

of the computational complexity for obtaining a final seismic image

while according to (14) and (15) we guarantee the even symmetry of
the 1-D constituent filters to result in an overall desired wavenumber

response. Clearly, since the 1-D subfilters are of even symmetry,

the number of multiplications per output sample required to realize

the 2-D complex-valued seismic migration FIR filter using the SVD
realization scheme is K(N + 1), where K < (N + 1)/2. The

(a)

(b)

Fig. 2. A complex-valued 25 × 25 predesigned 2-D seismic mi-
gration FIR digital filter with a cut-off kcp = 0.25: (a) Magnitude
spectrum, and (b) Phase spectrum.

number of multiplications per output sample in this case is much
less than when compared to the direct convolution. Also, we will

save in the number of multiplications per output sample even when

compared to migration performed via direct convolution taking into

consideration that such FIR filters are of quadrantal symmetry as far
as

K(N + 1) <
(N + 1)2

4
. (17)

3. SIMULATION RESULTS

A 25×25 complex-valued seismic migration FIR filter was designed
using the Modified Projections onto Convex Sets (POCS) method

described in [2] for ∆z = 2 m, ∆x = ∆y = 10 m, ∆t = 0.004
seconds, ωo = 50π radians/sec, and a velocity co = 1000 m/s, to
give a normalized cut-off wavenumber of kcp = 0.25 (see Fig.2 (a)
for its magnitude response and (b) for its passband phase response).

The 2-D FIR filter impulse response matrix is transformed to be in
the form of (9) and then decomposed to give the resultantB1 matrix

based on (11). The rank of the impulse response matrix of this filter

is of full rank, i.e., rank(B1) = 13. That is, the number of paral-
lel sections that should be used to correctly implement such filters is
equal to 13 sections. However, Fig. 3 suggests that we can imple-
ment such a filter matrix with less number of parallel sections (see

Fig. 1) by discarding the insignificant singular values according to

(16) where we can see that 4 or 5 parallel sections are sufficient to re-
alize our migration filter. Fig. 4 (a) and (b) shows the magnitude and
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Fig. 3. Singular values of the matrix B1 of the complex-valued pre-

designed 25 × 25 2-D seismic migration FIR digital filter.

Table 1. Comparison of the number of multiplications and additions
per output sample required to realize 2-D complex-valued FIR seis-

mic migration filterN = 25.

Method Multiplications Additions

2-D convolution (N+1
2

)2 = 169 N2 − 1 = 624

McClellan 5N−1
2

+ 1 = 61 9(N−1
2

) − 2 = 106

Improved McClellan 8N−1
2

+ 1 = 97 12(N−1
2

) − 2 = 142
SVD (K = 5) K(N + 1) = 130 2K(N − 1) = 240

the phase spectrums of the SVD realized version of the predesigned

2-D FIR filter with 5 parallel sections. Finally, Table. 1 compares the
number of multiplications and additions per output sample required

to realize the 2-D complex-valued seismic migration FIR filter us-

ing the direct convolution considering the quadrantal symmetry of

the impulse response, the original McClellan transformation, the im-
proved McClellan transformation and our suggested SVD technique

for N = 25. The original McClellan transformation has the low-
est number of multiplications per output sample among all of these

schemes. However, the proposed SVD technique is more economical
than the direct 2-D convolution with symmetry. Notice that the SVD

realization produces perfect circularly symmetrical magnitude and

phase (retained phase) responses and, therefore, it would be expected

to result in superior 3-D migrated seismic volumes when compared
to 3-D migration based on both McClellan transformations. This

point will be investigated and confirmed in future work.

4. CONCLUSION

We presented a novel application of singular value decomposition

(SVD) for realizing 2-D quadrantally symmetrical complex-valued

seismic migration FIR digital filters which are used for the expen-

sive application of 3-D migration. Both wavenumber magnitude and
phase responses possess circular symmetry unlike migration FIR

filters realized with the previously reported McClellan and the im-

provedMcClellan transformations for such geophysical applications.

This SVD realization saved 23.08% of the number of multiplications
per output sample and 61.54% of the number of additions per out-
put sample when compared to direct implementation with symmetry

via true 2-D convolution. We are currently deriving the required for-

mulas to quantify the approximation error. This gives us the error
bounds for this new proposed SVD scheme.

(a)

(b)

Fig. 4. A complex-valued 25 × 25 2-D seismic migration FIR digi-
tal filter with a cut-off kcp = 0.25 realized using our proposed SVD
method with K = 5: (a) Magnitude spectrum, and (b) Phase spec-
trum.
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