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ABSTRACT The whole dataset comprises more than 100 files,

recorded on urban and rural zones, with different kind of 

vegetation and percentage of manmade and natural objects.

Based on these characteristics, we divided the whole dataset

in 7 subsets. In this summary, we report the results of files

relating to grass fields and dense vegetated areas (trees).

The images of two analyzed files are shown in Fig.1 and

Fig.2. Each image is 1784 1472 pixels large then each file 

contains 2,626,048 real amplitude data.

In this work, we deal with the problem of modeling SAR

clutter data from different vegetated areas. We analyzed

MSTAR dataset by means of histogram, moment analysis

and covariance estimation. Some results are shown in this

summary .

1. STATISTICAL ANALYSIS 

The real data used throughout this document are high-

resolution SAR data in X band, collected in strip map mode

during September of 1995 at the Redstone Arsenal,

Huntsville, Alabama, by the Sandia National Laboratory

(SNL) SAR sensor platform. DARPA and Air Force 

Research Laboratory jointly sponsored the collection as part

of the Moving and Stationary Target Acquisition and 

Recognition (MSTAR) program. The SAR features are

summarized in Table 1. 

1.1. Amplitude analysis

The first step of our statistical analysis focused on the 

validation of theoretical models for the first order

distribution of the data. Many distributions have been

proposed in the literature to model the amplitude probability 

density function (PDF) of ground SAR data [1].

In this work, we compare the histogram or empirical pdf 

of the data with Log-normal (LN), Weibull (W), K, and 

Generalized K (GK) PDFs. The expressions of these PDFs

and their moments are reported below after the figures

where Z denotes the clutter amplitude.
Data Collectors Sandia National Lab

Acquisition date 05/09/1995

Site Huntsville, Alabama (USA) 

Sensor name Twin Otter

Range resolution 0.3047 m

Cross-range resolution 0.3047 m

Range pixel spacing 0.2021048 m

Cross range pixel spacing 0.203125 m

Additive Noise -32 to -34 dB 

Central frequency 9.60 GHz 

Bandwidth 0.591 GHz

Dynamic Range 64 dB 

Azimuth Beamwidth 8.8°

Elevation Beamwidth 6.8°

Polarization HH

Bits per pixel 16

Fig.1 – Grass field, file HB06176 
Table 1 - MSTAR characteristics
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The characteristic parameters of the theoretical PDFs 

were estimated by the classical method of moments (MoM)

(for details see [1] and [2]).

Fig.2 – Dense vegetated area (trees), file HB06192 
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The results of the histogram analysis are reported in Fig. 

3a for the grass field of the file HB06176 and Fig. 3b for the

trees. The results in Fig.3a show that, for this file, the PDFs

are very similar each other, but for the LN model, and to the 

shape of the histogram. The analysis of moments shows that

GK and Weibull models provide the best fitting. For the

trees none of the tested models exhibits a very good fitting 

as show in Fig. 3b, particularly on the tails. In this scenario

the clutter is much more spiky than for the grass field.
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where  is the shape parameter, and  is the scale

parameter.
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where c is the shape parameter and b is the scale

parameter. The Rayleigh PDF is a particular case of the

Weibull PDF for c=2 . 
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Fig. 3a-b – PDFs and histogram of clutter amplitude
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where  is the gamma function,  is the modified

Bessel function of the third kind of order 

1( )K

1,  is the

shape parameter, and  is the scale parameter.
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After testing some statistical model on the overall amplitude

of the clutter from dense vegetated areas, we performed a

statistical analysis on speckle and texture separately [1]. We

considered the data of file HB06192 where each tested 

model failed in modeling the amplitude histogram and the

file HB06176 where almost all the models perform well. In 

our analysis we supposed that the clutter process is a 

compound process ( ) ( ) ( )r n n x n , where ( )n  is the

texture and x(n) is the speckle [2]. As well know in the

literature, texture and speckle have very different

correlation times. Due to the physical nature of the texture
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that takes into account the space variations of the local

power of the image, it can be considered as a long time (or 

space) correlated process. Then the texture can be supposed

constant (or very slowly varying) on small patches of the

image and it can be estimated from the amplitude data as

[2].
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where 0 1m N  and 
1

0

ˆ ( )
N

n

n N . This algorithm

has been applied in both directions, then row-by-row and

column-by-column of the texture estimated matrix. N  is 

the dimension of the texture matrix in range or cross-range. 

In the following figures we show the average covariance

coefficient, that is: 
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where Nr  and Ncr are the number of samples in range and

cross-range respectively used for the estimation, then the

dimensions (in pixels) of each patch. In performing this 

estimation we fixed Nr=Ncr=10, without overlap. It is

apparent from eq. (11) that every 100 samples of clutter

amplitude we obtained only 1 texture sample. The 

dimension of the square window has been chosen as a 

compromise between accuracy of the texture estimate and 

variation time of the texture itself. A larger window could

improve the texture estimate only if the texture would be 

constant in a larger space interval, otherwise the estimation

calculates only an average texture. 
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where  is the covariance for each kth row or column

and  is the relating variance.
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For the grass clutter we can state that in both directions

the differences in the covariances are small. The covariance 

coefficient plotted in Fig. 8 shows that the covariance 

exhibits a fast drop in a distance of 5 m in both cross-range 

and range. After this interval it goes to zero slowly with

some oscillations, particularly in cross-range. Fig. 9 shows

the covariance coefficient for dense vegetated area. The 

drop of the covariance in cross-range direction is faster than

in range direction and it presents negative values. These

phenomena are due to the presence of shadows, stronger

and larger in cross-range direction than in range [3]. The 

speckle for both images and both directions is almost white.

The speckle can be estimated by normalizing the data 

amplitude with respect to the estimated texture, thus

( , )
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ˆ( , )
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where k i  and .[ , ( 1)c cN i N ] ][ , ( 1)cr crm jN j N

On speckle and texture we carried out a statistical 

analysis very similar to that performed on the amplitude.

We used same models, Weibull, Rayleigh, K, LN and LNT

for the speckle, and Gamma, Generalized Gamma (G ) and 

LN for the texture. The results are shown in Figs. 4-7. For 

the grass field we obtained a good fitting of the texture 

histogram with the Gamma and LN PDFs. For the speckle 

the best fitting is to the Weibull PDF, that, in this case, is

very similar to the Rayleigh PDF. Therefore, we can 

conclude that for the grass, even with very high resolution,

the compound-Gaussian model is still good. We cannot state 

the same for the tree vegetated areas. The speckle is not 

more Rayleigh distributed. In our analysis we obtained the

best fitting with the LNT PDF and the texture PDF does not

follow anyone of the tested PDFs.

3. CONCLUSIONS 

A detailed statistical analysis has been performed on

MSTAR clutter data scattered by grass field and dense 

vegetated areas, manly covered by trees, with the aim of

highlighting the differences in the scattering due to the

different vegetation. Based on our results we can conclude

that, while the compound-Gaussian model can be 

successfully applied to describe the grass clutter echoes, it 

cannot for dense vegetation, where speckle is not more

Rayleigh distributed and the texture does not follow any

tested PDF. Moreover, the correlation characteristic of the

speckle does not depend on the vegetation but only on the

sensor system, then the speckle is a white process. On the

contrary, the texture generally presents a faster drop off in

the grass clutter and in the cross-range direction.
2. COVARIANCE ANALYSIS 

Acknowledgments: the authors with to thanks Mr. Larry

Murdock, from EOARD who kindly provided the MSTAR

datasets.

The second step of our analysis was to estimate the

autocovariance function of the data, both in range and cross-

range. We performed the covariance analysis on the data

amplitude, on the texture and on the speckle for both files.

We show here only the results about the texture. The texture

covariance function has been estimated as: 
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Fig.4 – PDFs and histogram of grass field texture
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Fig. 5- PDFs and histogram of grass field speckle 
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Fig. 6 - PDFs and histogram of the texture of tree vegetated area
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Fig. 7 - PDFs and histogram of the speckle of tree vegetated area

-0.2

0

0.2

0.4

0.6

0.8

1

-50 -40 -30 -20 -10 0 10 20 30 40 50

Cross-range

Range

A
u
to

co
v

a
ri

an
c
e

meters

Fig. 8 – Covariance function of data of grass field 
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Fig. 9 – Covariance function of data of tree vegetated area
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