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ABSTRACT

The input pupil of interferometry-based observation instru-

ments is necessarily segmented. Since the Optical Transfer

Function (OTF) of any optical instrument observing in inco-

herent light is the auto-correlation of its input pupil, it follows

that any combination of size and position of each pupil seg-

ment will have an impact on the OTF behavior and therefore

on the quality of the output image. The goal of this study is

to propose computational geometry methods allowing to find

pupil geometries leading to an isotropic OTF support with

a controlled redundancy of viewed spatial frequencies in the

Fourier domain.

1. INTRODUCTION

The diameter of the primary mirror of a telescope is propor-

tional to its resolution power. In order not to build too large

mirrors, interferometric telescopes [1] have been adopted as

they synthesize (very) large instruments by interferometri-

cally combining several smaller instruments (also called pupils).

Such a method is more specifically called Optical Aperture

Synthesis (OAS) and is used in astronomy from Earth.

Let us now imagine observing the Earth from a high orbit

(e.g., at a distance of ∼ 36000 km) with a Ground Sample
Distance (GSD) of 1 m. A simple calculus shows us that we
would need a telescope having a diameter of approximately

20m for an optical wavelength λ ∼ 500 nm. Needless to say,
such an instrument would not be adapted to the observation

from space and the use of OAS is again to be considered in

this case.

Given a set P of circular pupils of the OAS instrument in a
plane, the Optical Transfer Function (OTF) of this multi-pupil

set is the auto-correlation [2] of P . The support of the OTF
denotes all the observable spatial frequency components. In-

deed, the output of each of the individual pupils is interfer-

ometrically combined with each other and each interferome-
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Fig. 1. Examples of OAS spaceborne instrument concepts [3]

ter pair measures a “Fourier domain” bounded by the inter-

correlation support (ICS) of two pupils.

Furthermore, for a wavelength λ, a GSD p and a platform
altitude h, the auto-correlation support (ACS) of the pupils
should cover a square of side 2c = λh/p (the sampling fre-
quency) centered at the origin. A good approximation con-

sists in covering the disk of diameter 2c inscribed in this square
while minimizing the Fourier components that lie outside this

square in order to reduce aliasing effects.

The underlying problem can be formally stated in geometric

terms as follows. Given an objectiveO supposed to be a disk,
design a system of circular pupils P = {P1, . . . , Pn} such
that its auto-correlation support C covers entirely the objective
while minimizing some cost function. Here C = {t ∈ R

2 |
(P + t) ∩ P �= ∅} and P + t = {p + t | p ∈ P}. The cost
function may include the number of pupils, their positions,

their radii, etc.

The outline of this paper follows. In section 2, we introduce

power diagramswhich play a central role in our study, and use
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Fig. 2. A power diagram of 9 disks in the Euclidean plane. The
dotted circle has no power cell.

them to decide whether the objective is covered. In section 3,

we consider the centers of the pupils to be given and provide

an efficient algorithm to minimize the sum of the radii of the

pupils under the constraint that the ACS covers the objective.

We devote section 4 to considering the problem where the

radii of the pupils are known but their positions are unknown.

Section 5 concludes the paper.

2. POWER DIAGRAMS AND THE DECISION
PROBLEM

Definition. Let S = {D1, . . . , Dm} be a set ofm disks in the
plane. We denote by ci the center of Di and by ρi its radius.

The power distance of a point x to the circle ∂Di is defined

as

πi(x) = ||x − ci||2 − ρ2

i .

For a point x, πi(x) is < 0, 0, > 0 depending whether x lies
inside, on the boundary of, or outsideDi.

The power cell ofDi consists of the points whose power dis-

tance to ∂Di is smaller than their powers to the other circles

of S:

Vi = {x ∈ R
2 | πi(x) ≤ πj(x), j = 1, . . . , m}.

The power cell Vi is the intersection of m − 1 half-planes.
Hence Vi is a convex polygon, possibly empty or unbounded.

The collection of all non-empty Vi forms the power diagram
of S, denoted by PD(S) (see Fig. 2). The edges and the
vertices of the power cells are called the edges and the vertices

of PD(S). Observe that an edge is incident to two cells and
a vertex is, in general, incident to three cells.

The power diagram PD(S) can be computed in time
O(m log m), which is worst-case optimal, and robust and ef-
ficient implementations exist [4].

Decision problem. Let P = {P1, . . . , Pn} be a system of n
disks called the pupils and O be a disk centered at the origin
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Fig. 3. A system of three pupils (left) and its ACS (right), the ob-
jective is represented by a thick circle.

called the objective. For i = 1, . . . , n, we denote by ci and ρi

the center and the radius of pupil Pi. The ACS of the system

is C = {t ∈ R
2 | (P+t)∩P �= ∅}, whereP+t = {p+t | p ∈

P}. The decision problem consists in determining whetherO
is covered by C.
The inter-correlation support of two pupils Pi and Pj is the

Minkowski differenceCij = {pi−pj | pi ∈ Pi and pj ∈ Pj}
of the Pi and Pj . It is not difficult to see that Cij is a disk

with center cij = ci − cj and radius ρij = ρi +ρj . Moreover,

C =
⋃

ij Cij (see Fig. 3). We write VO for the power cell

of O and Vij for the power cell of Cij in the power diagram

of C ∪ O. The two following lemmas show a necessary and
sufficient condition for coveringO by

⋃
ij Cij (see Fig. 4).

Lemma 1. ∂O ⊂ int C iff ∂O does not intersect VO .

Indeed, if ∂O ⊂ int C, then for any point p ∈ ∂O, p lies
strictly inside some disk of C, say,Cij , which implies πO(p) =
0 > πij(p). Thus p does not belong to VO by definition. The

sufficient condition is proved similarly.

We need now to check thatO does not cover a holeH of C. H
being compact, the power distance to C which is continuous,
positive inside H and 0 on ∂H , has to reach a maximum at a
point h ∈ H . The point where such a maximum is reached is
a vertex of PD(C).

Lemma 2. Suppose ∂O ⊂ int C, O is covered by int C iff
there is no vertex of PD(C) in O \ C.
Lemmas 1 and 2 give us a simple algorithm that solves the

decision problem in O(n2 log n) time.

3. FIXED-CENTER PROBLEM

In this section, the centers of the pupils are fixed and we

present two algorithms for optimizing the radii. Both algo-

rithms are based on the following simple observation. Let p
denote a point, C a circle of center c and radius r, and π(p)
the power of p to C. Then the circle of center c and squared
radius r2 + π(p) passes through p.
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Fig. 4. LEFT: A set of three pupils. Some vertices of VO in PD(C∪

O) are outside O and the objective is not covered. RIGHT: The
same set of pupils but with squared radii increased by some α > 0.

All vertices of VO move towards the origin and are inside O. The

objective is covered then.

3.1. A simple optimization problem

In this subsection, we increase/decrease the squared radii (also

called weights) of the pupils by a same amount. This leads to

an optimization problem in one variable. More precisely, con-

sider adding to each of the weights of the pupils a real num-

ber α. This does not change PD(C) and the only vertices of
PD(C ∪ O) that need to be modified are the vertices of VO

(see Fig. 4). Hence there exists a minimum value of α for
which the hypotheses of Lemmas 1 and 2 hold. Equivalently,

this is the smallest α that makes the objective covered by the
union of the disks. The following procedure computes such a

value of α. By πij(x), we denote the power distance of x to
∂Cij . Vij denotes the power cell of Cij in PD(C).

function ALPHA(O,C)
1 α ← −∞
2 compute PD(C)
3 for each vertex p in PD(C) ∩ O

4 // Vij is a power cell incident to p

5 α ← max(α, πij(p))
6 compute PD(C ∪ O)
7 for each vertex q of VO in PD(C ∪ O)
8 α ← max(α, π0(q))
9 return α

In Lines 2-5, we compute the minimum α such that all ver-
tices of PD(C) ∩O belong to C. Lines 6-8 compute the min-
imum value of α that makes all vertices of VO in PD(C ∪O)
belong to C. The time complexity of the algorithm is domi-
nated by the complexity of Lines 2 and 6, which isO(n2 log n).

Maximizing the objective: Using a similar approach, we ob-
tain a similar result for maximizing the radius of O while
keeping the pupils fixed.

3.2. Minimizing the sum of the radii of the pupils

We consider now the more difficult problem of optimizing

the sum of the radii of the pupils and propose a heuristic so-

lution that turns out to perform well in practice. Instead of

increasing/decreasing the weights by a same amount as in the

previous subsection, we consider the radii of the Pi as n vari-
ables. Function ALPHA*(O, C) below proceeds in two main
steps (see Fig. 5). First, we compute quantities, denoted αij ,

by which the squared radii of (some of) the Cij must be en-

larged so as to satisfy Lemmas 1 and 2 (lines 1-11). This

step is similar to Function ALPHA(O, C). Since the diagrams
may change, we iterate this step until the αij do not increase.

Thanks to the fact that the radii of the Cij necessarily in-

crease, it can be shown that the procedure always terminates.

Moreover, upon termination, Lemmas 1 and 2 will be satis-

fied. We then minimize the sum of the radii of the Pi under

n2 constraints (line 12):

min

n∑
i=1

ρi

s.t. ρi + ρj ≥
√

ρ2

ij + αij , i, j = 1, . . . , n.

This is a linear program and the feasible set is non-empty.

Thus, there exists an optimal solution.

function ALPHA*(O,C)
1 αij ← −∞, i, j = {1, . . . , n}
2 repeat
3 compute PD(C)
4 for each vertex p of PD(C) ∩ O

5 for each Cij whose power cell is incident to p

6 αij ← max(αij , πij(p))
7 compute PD(C ∪ O)
8 for each vertex q of VO in PD(C ∪ O)
9 for each Cij whose power cell is incident to q

10 αij ← max(αij , πij(q))
11 until no αij increases

12 compute {ρi}i=1,...,n by solving the above linear program

13 return {ρi}i=1,...,n

Additional constraints: In addition to covering the objec-
tive, we can also bound the radii of the pupils and forbid any

overlap among the pupils. This can be done by adding the

following constraints to the linear program above

ρi + ρj ≤ ||ci − cj||, 1 ≤ i < j ≤ n,

min radius ≤ ρi ≤ max radius, i = 1, . . . , n.

4. PROBLEMWITH FIXED AND IDENTICAL RADII

In [5], Golay described an algorithm to search for point arrays
with non-redundant ACS (no distinct pairs of pupils have the
same inter-correlation support). In our case, the points are
the centers of the pupils and redundant arrays are acceptable.
We adopt Golay’s algorithm with some modifications. First,
we discretize the plane into a regular triangular grid G. If
the sides of the grid have length ρ, then the disks centered at
its vertices with the same radius ρ/

√
3 are sufficient to cover

completely the grid. Let S be the minimum set of vertices
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Fig. 5. TOP: A set of 5 unit pupils (left) and its ACS (right) does not
cover the objective of radius 5. The dotted circles indicate the disks

Cij after increasing the squared radii by αij . The dark points are

the vertices of VO in PD(C ∪ O) while the gray ones represent the

vertices of PD(C) in O. BOTTOM: The same set of pupils Pi with

radii increased by αi (left) and its ACS (right) covers completely the

objective. The original pupil set is drawn dotted.

of G such that the union of the corresponding disks contains
O. Our algorithm works as follows: We add the pupils on the
grid one by one. We find the vertex of S furthest from the ori-
gin o (the center of O) and try to place the next pupil to cover
this vertex. We consider all possible cases such that the ICS
of this pupil with one of the existing pupils cover the vertex.
Next, we place the pupil at the position where its ICS with
other pupils covers as many elements in S as possible and
then remove these elements from S. We repeat this construc-
tion until S is empty. A comparison of our algorithm with
Golay’s algorithm is shown in Fig. 6. Below is the pseudo-
code of our algorithm.

function GREEDY(O)
1 construct a triangular grid G and compute the set S
2 P ← {o} // pupil center set
3 while S �= ∅ do
4 furthest ← arg maxp∈S ||p − o||
5 for each p ∈ G such that

∃q ∈ P | p − q = furthest or q − p = furthest

6 countp = #{q ∈ P, p − q ∈ S or q − p ∈ S}
7 candidate ← arg maxp∈G countp

8 for each q ∈ P
9 if (candidate − q) ∈ S Pop (candidate − q) from S

10 if (q − candidate) ∈ S Pop (q − candidate) from S

11 P ← P ∪ {candidate}
12 return P

Fig. 6. A set of 20 pupils of unit radius with its corresponding ACS
and an objective disk of radius 25. The objective is completely cov-

ered in our algorithm (left) while there are some small holes inside

the objective in Golay’s algorithm (right).

5. CONCLUSION

We have considered the problem of determining the positions

and the sizes of pupils to cover an objective in the Fourier do-

main (the auto-correlation domain). In this paper, the under-

lying geometric problem is formulated and some initial but

efficient algorithms have been presented. This study opens

many perspectives of which the problem of arranging a set of

pupils with different radii is still unsolved. Moreover, for de-

convolution purposes, it remains to optimize jointly the sup-

port (the Fourier coverage) and the minimum value of the

auto-correlation module, i.e. the modulation transfer function

of the instrument.
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