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ABSTRACT

We consider the general framework of planar object registra-
tion and tracking. Given a sequence of observations on an ob-
ject, subject to an unknown sequence of affine transformations
of it, our goal is to estimate the deformation that transforms
some pre-chosen representation of this object (template) into
the current sequence of observations. We propose a method
that employs a set of non-linear operators to replace the orig-
inal high dimensional and non-linear problem by an equiva-
lent linear problem, expressed in terms of the unknown affine
transformation parameters. We investigate two modelling and
estimation solutions: The first, estimates the affine transfor-
mation relating any two consecutive observations, followed by
a least squares fit of a global model to the estimated sequence
of instantaneous deformations. The second, is a global solu-
tion that fits a time-dependent affine model to the entire set of
observed data.

1. INTRODUCTION

This paper is concerned with the general problem of object reg-
istration and tracking. Given a sequence of observations on an
object, subject to an unknown sequence of affine transformations
of it, our goal is to track the deformation that transforms some pre-
chosen representation of this object into the observed sequence.

To enable a rigorous treatment of the problem we begin by
defining the “similarity criterion”. Let G be a group and S be a set
(a function space in our case), such that G acts as a transformation
group on S. The action of G on S is defined by G × S → S such
that for every φ ∈ G and every s ∈ S, (φ, s) → s◦φ (composition
of functions on the right), where s◦φ ∈ S. From this point of view,
given two functions h and g on the same orbit, the basic task is to
find the element φ in G that makes h and g identical in the sense
that h = g ◦ φ.

In this paper we concentrate on parametric modelling and es-
timation of the object deformation as a function of time, based on
a sequence of observations on the deforming object. Thus in the
current framework the group G is the affine group, and we seek
to track the evolution in time of the sequence of affine transforma-
tions the observed object undergoes.

2. ESTIMATION OF MULTIDIMENSIONAL AFFINE
TRANSFORMATIONS: PROBLEM DEFINITION AND

THE BASIC SOLUTION

The basic problem addressed in this section is the following: Given
two bounded, Lebesgue measurable functions h, g with compact
supports (and with no affine symmetry, as rigorously defined be-
low) such that h : Rn → R, g : Rn → R where

h(x) = g(Ax) , A ∈ GLn(R), x ∈ Rn (1)

find the matrix A.
Let M(Rn, R) denote the space of compact support, bounded,

and Lebesgue measurable functions from Rn to R. Let N ⊂
M(Rn, R) denote the set of measurable functions with an affine
symmetry (or affine invariance), i.e., N = {f ∈ M(Rn, R)|∃A ∈
GLn(R),A �= I such thatf(x) = f(Ax) for every x ∈ Rn}.
Let MAff (Rn, R)

∆
= M(Rn, R) \ N denote the set of com-

pact support and bounded Lebesgue measurable functions with no
affine symmetry. Clearly MAff (Rn, R) is closed with respect to
the affine group operation, hence, if g ∈ MAff (Rn, R) then its
entire orbit is also is MAff (Rn, R).

We next provide a constructive proof showing that given an
observation h(x) ∈ MAff (Rn, R) and an observation on g(x) ∈
MAff (Rn, R) where h(x) = g(Ax), A can be uniquely deter-
mined.

Let x,y ∈ Rn, i.e., x = [x1, . . . , xn]T , y = [y1, . . . , yn]T .
Thus,

y = Ax , x = A−1y (2)

where

A =

⎡
⎢⎣

a11 · · · a1n

...
. . .

...
an1 · · · ann

⎤
⎥⎦ A−1 =

⎡
⎢⎣

q11 · · · q1n

...
. . .

...
qn1 · · · qnn

⎤
⎥⎦

Since A ∈ GLn(R), also A−1 ∈ GLn(R). It is therefore
possible to solve for A−1 and the solution for A is guaranteed
to be in GLn(R). Moreover, as shown below, in the proposed
procedure the transformation Jacobian is evaluated first, and by a
different procedure than the one employed to estimate the elements
of A−1. Hence, a non-zero Jacobian guarantees the existence of
an inverse to the transformation matrix.

Let f ∈ MAff (Rn, R) and let µn denote the Lebesgue mea-
sure on Rn. Define the notation∫

Rn

f
∆
=

∫
Rn

fdµn
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Note that in the following derivation it is assumed that the
functions are bounded and have compact support, as they are mea-
surable but not necessarily continuous. It is further assumed that
A ∈ GLn(R) has a positive determinant.

The first step in the solution is to find the Jacobian of the lin-
ear transformation A. Applying some Lebesgue measurable, left-
hand composition wk : R → R to the known relation h(x) =
g(Ax) and integrating over both sides of the equality, we obtain

∫
Rn

wk ◦ h(x) =

∫
Rn

wk ◦ g(Ax) = |A−1|
∫

Rn

wk ◦ g(y) (3)

Since h(x) and g(x) are given, while wk is our choice, all the
terms on the LHS and RHS of (3) can be evaluated and hence (3)
can be solved for |A−1|.

Next it is shown that, provided that g is “rich” enough in a
sense we rigorously define below, A can be uniquely estimated
by establishing a system of linear equations in the n unknown el-
ements in each of its rows. More specifically, let (A)k denote
the kth row of A. Applying a family of Lebesgue measurable,
left-hand compositions {w�} : R → R to the known relation
h(x) = g(Ax) and integrating over both sides of the equality, we
obtain∫

Rn

xkwp ◦ h(x) =

∫
Rn

xkwp ◦ g(Ax)

= |A−1|
∫

Rn

((A−1)ky)wp ◦ g(y)

= |A−1|
n∑

i=1

qki

∫
Rn

yiwp ◦ g(y)

p = 1, . . . , P (4)

Let

G =

⎡
⎢⎢⎢⎣

∫
Rn

y1w1 ◦ g(y) · · · ∫
Rn

ynw1 ◦ g(y)

. . .
...∫

Rn

y1wP ◦ g(y) · · · ∫
Rn

ynwP ◦ g(y)

⎤
⎥⎥⎥⎦

Rewriting (4) in a matrix form

G

⎡
⎢⎣

qk1

...
qkn

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

|A| ∫
Rn

xk(w1 ◦ h(x))

...
|A| ∫

Rn

xk(wP ◦ h(x))

⎤
⎥⎥⎥⎦ (5)

Provided that the sequence of composition functions {wp}P
p=1 is

chosen such that G is full rank, the linear system (5) has a unique
solution. Similar system of equations is solved for each k to obtain
all the elements of A−1. Hence we have the following [1]:

Theorem 1 Let A ∈ GLn(R). Assume h, g ∈ MAff (Rn, R)
such that h(x) = g(Ax). Given measurements of h and g, then
A can be uniquely determined if there exists a set of Lebesgue
measurable functions {w�}p

�=1, p ≥ n, such that the matrix G
defined above, is full rank.

In the following sections we show that the problem of obtain-
ing an explicit solution for the parameters of an unknown sequence
of affine transformations – whose direct solution requires a highly
complex search in a function space – can be formulated as a pa-
rameter estimation problem. Moreover, it is shown that the origi-
nal problem can be formulated in terms of an equivalent problem
which is expressed in the form of a linear system of equations in
the unknown parameters of the affine transformation sequence. A
solution of this linear system of equations provides an explicit so-
lution for the unknown transformation parameters.

3. THE ALGORITHMIC SOLUTION FOR A TIME
DEPENDENT EVOLUTION

In this section we extend the derivation in [1], which is briefly
summarized in Section 2, to the case where the affine transforma-
tion changes with time. The set of observations in this case is the
time sequence h(x, t).

3.1. Sequential Instantaneous Estimation

Sequential instantaneous deformation estimation is based on the
following: At each time instant t, the transformation relating the
pose of the object at time t relative to that at time t−1 is estimated.
This is implemented by a direct application of the algorithm sum-
marized in Section 2, assuming that for every t, A(t) ∈ GLn(R)
and that h(x, t) ∈ MAff (Rn, R). Thus using the notation of
the previous section we assign for each t, h(x) = h(x, t) and
g(x) = h(x, t − 1), and solve for A−1 at each time instant t.
Clearly this estimation method employs only the information in
the two consecutive time instants.

Let {ei(t) : R → R} be a set of linearly independent func-
tions in L2(R) (e.g., polynomials, trigonometric functions). As-
sume that the time dependence of A−1 is parameterized as

A−1(t) =

⎛
⎜⎜⎜⎜⎜⎝

L∑
i=1

ai
11ei(t) · · ·

L∑
i=1

ai
1nei(t)

...
. . .

...
L∑

i=1

ai
n1ei(t) · · ·

L∑
i=1

ai
nnei(t)

⎞
⎟⎟⎟⎟⎟⎠

=

L∑
i=1

⎛
⎜⎝

ai
11 · · · ai

1n

...
. . .

...
ai

n1 · · · ai
nn

⎞
⎟⎠ ei(t) t ∈ R (6)

The problem then is to determine the above sequence of L matrices
from the previously obtained sequence of estimates {Â−1

t }. We
thus employ in a second stage a least-squares solution to (6) to ob-
tain a global parametric model for Â−1(t) based on the estimated
sequence {Â−1

t }.

3.2. Global Estimation of the Time Evolution

In the framework of global estimation of the dependence of the
deformation in time, it is assumed that the given template g(·) is
fixed in time. The set of observations is the time sequence h(x, t).
Thus, the problem statement is as follows: Let A(t) ∈ GLn(R)
for every t. Assume that g ∈ MAff (Rn, R) and that for every t,
h(t) ∈ MAff (Rn, R) such that

h(x, t) = g(A(t)x) (7)
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Thus, given h(t) and g, find A(t), which means, as in the previous
solution, that we need to determine the sequence of L matrices in
(6).

Define the following n-dimensional product ei1(t)ei2(t) · · · ein(t)
where the indices i1, i2, . . . , in ∈ {1, . . . , L} and let

{ei1(t)ei2(t) · · · ein(t)}L
i1,i2,...in=1

be the set of all such products. Clearly there are at most Ln dif-
ferent elements in this set. Let Q be the number of linearly in-
dependent element in this set. To simplify the notation we shall
refer to this set using the notation {fk(t)}Q

k=1. By definition, the
determinant of A−1(t) in (6) has the form

|A−1|(t) =

Q∑
k=1

dkfk(t) (8)

Extending the previous derivations to the time varying case we
have∫
Rn

wp ◦ h(x, t) =

∫
Rn

wp ◦ g(A(t)x) = |A−1|(t)
∫

Rn

wp ◦ g(y)

(9)
Substituting (8) into (9) we have

∫
Rn

wp ◦ h(x, t) =

Q∑
k=1

dkfk(t)

∫
Rn

wp ◦ g(y) (10)

Let [t1, . . . , tv]T denote the vector of time samples and let {wi}P
i=1

be the sequence of chosen left-compositions. Then,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫
Rn

w1 ◦ h(x, t1)

...∫
Rn

w1 ◦ h(x, tv)

...

...∫
Rn

wP ◦ h(x, tv)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1(t1)
∫

Rn

w1 ◦ g(y) · · · fQ(t1)
∫

Rn

w1 ◦ g(y)

...
...

f1(tv)
∫

Rn

w1 ◦ g(y) · · · fQ(tv)
∫

Rn

w1 ◦ g(y)

...

...
f1(tv)

∫
Rn

wP ◦ g(y) · · · fQ(tv)
∫

Rn

wP ◦ g(y)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

d1

d2

...
dQ

⎞
⎟⎟⎟⎠

By choosing the {wi}P
i=1 such that at least Q rows of this matrix

are linearly independent |A|(t) is found by a LS solution. Clearly,
if the model is accurate only P = Q equations are required.

Having obtained the Jacobian of the transformation we next
determine the entries of A−1(t) for each of its rows and for all

t ∈ {t1, . . . , tv}.∫
Rn

xkwp ◦ h(x, t) =

∫
Rn

xkwp ◦ g(A(t)x)

= |A−1(t)|
∫

Rn

((A−1(t)k y)wp ◦ g(y)

= |A−1(t)|
∫

Rn

  
n∑

j=1

(

L∑
i=1

ai
kjei(t))yj

)
wp ◦ g(y)

)

=
n∑

j=1

⎛
⎝|A−1(t)|

 
L∑

i=1

ai
kjei(t)

) ∫
Rn

yjwp ◦ g(y)

⎞
⎠

=
L∑

i=1

n∑
j=1

ai
kj

⎛
⎝ei(t)|A−1(t)|

∫
Rn

yjwp ◦ g(y)

⎞
⎠ (11)

which yields when expressed in a matrix form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫
Rn

xkw1 ◦ h(x, t1)∫
Rn

xkw1 ◦ h(x, t2)

...∫
Rn

xkw1 ◦ h(x, tv)∫
Rn

xkw2 ◦ h(x, t1)

...∫
Rn

xkwP ◦ h(x, tv)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= [G1
t ,G

2
t , . . . ,G

L
t ]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
k1

a1
k2

...
a1

kn

a2
kn

...
aL

kn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)

where
Gi

t = [Gi,1
t ,Gi,2

t , . . . ,Gi,n
t ] (13)

and

Gi,j
t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ei(t1)|A−1|(t1)
∫

Rn

yjw1 ◦ g(y)

ei(t2)|A−1|(t2)
∫

Rn

yjw1 ◦ g(y)

...

ei(tv)|A−1|(tv)
∫

Rn

yjwP ◦ g(y)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)

Hence,

Theorem 2 Let A(t) ∈ GLn(R) for every t. Assume that for
every t, h(t), g ∈ MAff (Rn, R) such that h(x) = g(A(t)x).
Then given measurements of h(t) and g, A(t) can be uniquely
determined if there exists a set of measurable functions {w�}P

�=1

such that the matrix

[G1
t ,G

2
t , . . . ,G

L
t ] (15)

is full rank.

II  787



4. NUMERICAL EXAMPLE

The example illustrates the operation of the proposed algorithms
on a car image shown in Figure 1. The image coordinate system is
[−1, 1]×[−1, 1]. A sequence of 200 affine deformations is applied
to this image to create the observed time sequence. The car mo-
tion model is an approximation of a pure rotation by a third order
Taylor series expansion. The evolution in time of the deformation
model is depicted in Fig. 2 by the red curve, for each of the entries
of the deformation matrix A−1(t). The sequence of estimated
transformations, {A−1

t }, obtained by applying the sequential in-
stantaneous estimation procedure described in Section 3.1 is de-
picted by the blue curves. Obviously, since no global information
about the continuity of the motion is used, the resulting estimates
are noisy. However, when a global polynomial model is fit to this
noisy sequence of estimates, a smooth curve which is very close
to the trajectory of the deformation, is obtained. It is depicted in
green. The results obtained by the global estimation procedure de-
scribed in Section 3.2 are essentially identical to those obtained by
fitting the same type of model (polynomial) to the sequence of se-
quential estimates {A−1

t } (depicted by the green trajectory). It is
therefore concluded that the sequential, pairwise, estimates of the
time evolution of the deformation lead to an estimate of the time
evolution for the entire observation period which is of the same ac-
curacy as in the case where a global model is used, by employing
a considerably simpler computational procedure.

Fig. 1. An observation from the car sequence.
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Fig. 2. Time evolution of the transformation matrix A−1. From
top to bottom: A−1

11 ,A−1
12 ,A−1

21 ,A−1
22 . Red: the true function of

time of each entry; Blue: the sequential instantaneous estimate of
each entry as a function of time; Green: the estimated evolution
in time of each entry, both by the polynomial fit to the sequential
estimate and the global one.
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