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ABSTRACT
Image registration is a fundamental and important task in im-

age processing. It essentially estimates a transformation that

aligns two images. Cramer Rao Lower bound has recently

been used to establish the performance limit of image regis-

tration algorithms. However, it is known to be a weak lower

bound for some problems. In this paper, we analyze the mean

square error performance of transformation estimation in im-

age registration problems We focus on rigid body transfor-

mations, and derive a set of tighter alternatives, namely the

Bhattacharya bound and the Ziv-Zakai bound. Experimental

results demonstate the validity of our performance bounds.

1. INTRODUCTION

The primary objective of image registration is to match two

images that differ in certain aspects, e.g., translation, scal-

ing and rotation (assuming a rigid-body misalignment), but

essentially represent the same scene. A transformation is to

be found so that the points and objects in one image can be

related to their corresponding points and objects in the other

images.

Performance analysis for image registration is usually per-

formed visually. However, a visual inspection is not a sat-

isfactory evaluation method and hence one needs to explore

other evaluation techniques. Robinson and Milanfar [1] pro-

posed that Mean Square Error be used as a standard perfor-

mance measure to provide a fair comparison between differ-

ent algorithms. Some results on metrics and bounds, e.g.,

the Cramer-Rao lower bound (CRLB), for image registration

were obtained. Yetik and Nehorai [2] extended the results in

[1] to the case of general transformations. But in their results,

the rigid body transformation parameters are the functions of

unknown rotation angle and are hard to obtain in practice.

CRLB is typically used as a benchmark for mean squared

error performance in estimation problems. However, it is

known to be an optimistic bound that may not be tight enough

to provide meaningful insight into the achievable estimator

performance. There are other lower bounds that may, for

certain SNR regions, be better indicators of estimator per-

formance. For this reason, this paper investigates the Bhat-

tacharyya bound (BB) and the Ziv-Zakai bound (ZZB) for the

estimation of the transformation in image registration.

The CRLB and the BB belong to the family of determin-

istic ”covariance inequality” bounds, which treat the parame-

ter as an unknown deterministic quantity, and provide bounds

on the Mean Square Error (MSE) in estimating any selected

value of the parameter [3]. In the case of vector estima-

tion problems, the CRLB and BB of one parameter are usu-

ally functions of other unknown parameters which makes the

problem of computing the CRLB and BB difficult in practice.

The Ziv-Zakai bound is a Bayesian bound, which assumes

that the parameter is a random variable with known a priori
distribution. It provides a bound on the global MSE averaged

over the a priori probability density function [3]. Thus, we in-

corporate knowledge of the a priori transformation parameter

space via the a priori distribution and predict the performance

of image registration using this Bayesian bound. Our goal is

to identify robust and suitable metrics and bounds on the per-

formance of registration algorithms.

2. IMAGE REGISTRATION PROBLEM

Image registration is defined as a mapping between two im-

ages spatially so that they are aligned. The objective is to esti-

mate the appropriate transformation parameters. Let I1 (x, y)
and I2 (x, y) denote the two images to be registered. Each im-

age can be considered as a noise-free image plus noise. The

misalignment transformation is assumed to be applied to the

noise-free image. Assuming u (x, y) and v (x, y) to be the

transformed coordinates, the two images can be modeled as:

I1 (x, y) = f (x, y) + n (x, y) ,
I2 (x, y) = f (u (x, y) , v (x, y)) + n (x, y) .

(1)

In this paper we assume the noise n (x, y) to be i.i.d Gaussian

noise with variance N . Thus each pixel is considered as a

Gaussian random variable with the mean equal to the noise-

free pixel intensity and variance of N .

3. RIGID BODY TRANSFORMATION

Misalignment error defined as a rigid body transformation has

the following mapping function:

u = cos θ0x + sin θ0y + x0

v = − sin θ0x + cos θ0y + y0
(2)
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The parameters to be estimated for registration are rotation

θ0, and translations x0 and y0.

3.1. Cramer Rao Lower bound

The CRLB for the iamge registration problem can be expressed

as[4]:

CRLB
(
θ̂i

)
= I−1 (i, i) i = 1, 2, 3. (3)

where I is the Fisher information matrix (FIM) with:

Iij = E

[
∂2LogP (I1, I2)

∂θi∂θj

]
(4)

P (I1, I2) is the joint probability distribution function of the

images I1 and I2; θ = {θ0, x0, y0} is the set of parameters

to be estimated. Let r denote the coordinates of the image

(u, v). Then the FIM of the rigid body transformation can be

expressed by:

I = 1
N

∑
r

{[(
fu (r) du

dθ0
+ fv (r) dv

dθ0

)
fu (r) fv (r)

]
∗
[(

fu (r) du
dθ0

+ fv (r) dv
dθ0

)
fu (r) fv (r)

]T}
(5)

where fu (r) and fv (r) are the derivatives of the image along

the x axis and y axis respectively. Then the CRLB for a given

θ0 is:

CRLB
(
θ̂i|θ0

)
= I−1 (i, i) i = 1, 2, 3. (6)

3.2. Bhattacharyya bound

The BB can be expressed as [5][6]:

BB
(
θ̂i

)
= J−1

M (i, i) i = 1, 2, 3. (7)

where JM is the M th order FIM with the size 3M ∗ 3M ,

which can be expressed as:

JM =

⎡
⎢⎣

I11 · · · I1M

...
. . .

...

IM1 · · · IMM

⎤
⎥⎦ (8)

The (m,n)th element of the 3 ∗ 3 matrix Ik,r is defined as:

[Ik,r]m,n = Eθ

{
∂k log P (I1, I2)

∂θk
m

∂r log P (I1, I2)
∂θr

n

}
(9)

for k, r = 1, ...,M and m,n = 1, 2, 3.

The element I11 is the FIM. So when M = 1, the BB

reduces to the CRLB. Increasing M will mean more compu-

tational effort but is expected to yield a tighter bound. Here

we consider the second order FIM for rigid body transforma-

tion which is given by:

J2 =
[

I11 I12

I21 I22

]
(10)

I11(i, j) = 1
N

∑
r

∂f(r)
∂θi

∂f(r)
∂θj

I12(i, j) = 1
N

∑
r

∂f(r)
∂θi

∂2f(r)
∂θ2

j

I21(i, j) = 1
N

∑
r

∂2f(r)
∂θ2

i

∂f(r)
∂θj

I22 (i, j) = 1
N

∑
r

∂2f(r)
∂θ2

i

∂2f(r)
∂θ2

j
+ 1

N2

∑
r

(
∂f(r)
∂θi

)2∑
r

(
∂f(r)
∂θj

)2

(11)

In the second order FIM given in (11), for the rigid body

transformation we have

∂f(r)
∂θ1

= fu (r) du
dθ0

+ fv (r) dv
dθ0

∂2f(r)
∂θ2

1
= −fu (r)u − fv (r) v + fuu (r)

(
du
dθ0

)2

+(fuv + fvu) du
dθ0

dv
dθ0

+ fvv (r)
(

dv
dθ0

)2

∂f(r)
∂θ2

= fu (r) , ∂f(r)
∂θ3

= fv (r)
∂2f(r)

∂θ2
2

= fuu (r) , ∂2f(r)
∂θ2

3
= fvv (r)

(12)

Thus, the BB is given by:

BB
(
θ̂i|θ0

)
= J−1 (i, i) i = 1, 2, 3. (13)

In the above results, the CRLB and BB are functions of

the rotation angle. If we assume that the rotation angle is

uniformly distributed in [0,∆θ], we can obtain the CRLB and

BB as follows,

CRLB
(
θ̂
)

=
∆θ∫
0

CRLB
(
θ̂|θ0

)
· P (θ0) dθ0

BB
(
θ̂
)

=
∆θ∫
0

BB
(
θ̂|θ0

)
· P (θ0) dθ0

(14)

3.3. Ziv Zakai Bound

While deriving CRLB and BB, we assumed that the inten-

sity of each image pixel has a Gaussian distribution. We may

also assume the transformation parameters, θ0, x0 and y0 to

be random variables. Here we assume that the rotation and

translations x and y are all uniformly distributed random vari-

ables in [0,∆θ], [0,∆x] and [0,∆y] respectively.

3.3.1. Translation error

Based on the result in [3], the ZZB for the translation error

along x axis is:

ZZB (x̂0) =

∆x∫
0

⎧⎨
⎩

∆θ∫
0

A (θ0, h)Pmin (θ0, h) dθ0

⎫⎬
⎭hdh

(15)

where A (θ0, h) = min {P (θ0, t) , P (θ0, t + h)}; Pmin (θ0, h)
is the probability of error associated with the hypothesis test-

ing problem
H0 : x0 = t
H1 : x0 = t + h

(16)
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where the two hypotheses are equally likely. Here t is the true

translation and h is the translation error.

For the estimation error h, the probability of error Pmin

is given by:

Pmin (θ0, h) = Q

(√
E(1−ρ(h))

2N

)

≥

⎧⎪⎨
⎪⎩

Q

(
h
2

√
r(c+cos(2θ0+δ))

N

)
, 0 ≤ h ≤

√
2

β

Q
(√

E
2N

)
, h >

√
2

β

(17)

where

F (w, v) is the Fourier transform of the imagef (x, y) ;

Q (x) =
+∞∫
x

1√
2π

e−
t2
2 dt; E =

∑
x,y

f2 (x, y);

ρ (h) = 1
E

∑
x,y

f (x, y) f (x − h, y);

M1 =
∫
w

∫
v

|F (w, v) |2w2dwdv;

M2 =
∫
w

∫
v

|F (w, v) |2v2dwdv;

M3 =
∫
w

∫
v

|F (w, v) |2wvdwdv;

r =
√

M2
3 + (M1 − M2)

2
/4;

δ = arcsin (M3/r) ; c = M1+M2
2r ;

β =
√

r (c + cos (2θ0 + δ)) /E.
(18)

Using a property in [3],

1
2

∆x∫
0

⎧⎨
⎩

∆θ∫
0

A (θ0, h) dθ0

⎫⎬
⎭hdh =

∆2
x

12
(19)

and substituting Equation (17) into (15), yields

ZZB (x̂0) = ∆2
x

6 Q
(√

E
2N

)
+

∆θ∫
0

1
∆θ⎧⎪⎨

⎪⎩
√

2
β∫
0

[
Q

(
h
2

√
r(cos(2θ0+δ))

N

)
− Q

(√
E
2N

)]
hdh

⎫⎪⎬
⎪⎭ dθ0

= ∆2
x

6 Q
(√

E
2N

)
+

NΓ1.5( E
4N )

∆θr
√

c2−1

[
tan−1

(
tan(∆θ+δ/2)�

c+1
c−1

)
− tan−1

(
tan(+δ/2)�

c+1
c−1

)]
(20)

Similarly, we can obtain the translation error along y axis,

which is:

ZZB (ŷ0) = ∆2
y

6 Q
(√

E
2N

)
+

NΓ1.5( E
4N )

∆θr
√

c2−1

[
tan−1

(
tan(∆θ+δ/2)�

c−1
c+1

)
− tan−1

(
tan(+δ/2)�

c−1
c+1

)]
(21)

3.3.2. Rotation error

A Gaussian distribution in time domain is still a Gaussian

distribution in Fourier domain due to the linear operation of

Fourier transformation. Then a polar transform is made on

the coordinates of the Fourier domain. It yields,

F1 (ρ, θ) = F (ρ, θ) + n (ρ, θ) ,
F2 (ρ, θ) = F (ρ, θ − θ0) e−jρcos(θ)x0−jρsin(θ)y0 + n (ρ, θ) .

(22)

By applying the results in [3] here to obtain the ZZB on the

rotation error, we have:

ZZB(θ̂o) =
∆2

θ

6
Q

(√
E

2N

)
+

N

β2
2E

Γ 3
2

(
E

4N

)
(23)

where

E =
∑
ρ,θ

P 2 (ρ, θ)

β2
2 =

∫
w

∫
v

|FP (w, v) |2v2dwdv/
∫
w

∫
v

|FP (w, v) |2dwdv

(24)

P (ρ, θ) is the polar transform of the Fourier transform of the

image and FP (w, v) is the Fourier transform of P (ρ, θ0).

4. EXPERIMENTAL RESULTS

For experimental verification, the image in Fig. 1 is used for

simulations. We generated a pair of images with a random

translation in x axis, translation in y axis and rotation uni-

formly distributed in [0, 10], [0, 10] and [0, 10o] respectively

using Bi-cubic interpolation. Then white Gaussian noise was

added to the image pair prior to registration. The FFT based

Fourier method [7,8] and the Mutual Information (MI) based

method [9,10] are used to estimate the translation and rota-

tion errors. The whole process was repeated 500 times at

each noise power value. Then we computed the root mean

square error of the translation and rotation estimates and com-

pared with CRLB, BB and ZZB. The results are shown in

Fig.2 and Fig.3. In this experiment, BB and ZZB are ob-

served to be tighter than CRLB. It is noticed that ZZB is

20dB higher than CRLB. Thus ZZB can characterize the per-

formance more closely and can be used as a good bound for

image registration problems.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of image registra-

tion performance evaluation from statistical estimation point

of view. We focused our attention only on rigid transforma-

tions. CRLB is a standard performance bound, that is fairy

simple to compute, but may be quite a loose bound. Further,

in the case of rigid body transformation in image registra-

tion problems, we have three parameters to estimate, rotation,

translation in x axis and translation in y axis. The CRLB of
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Fig. 1. An Example Image

these parameters are functions of the unknown parameter ro-

tation angle. This results in difficulty while obtaining a CRLB

value in practice. This paper assumes some knowledge of the

prior distribution of the transformation parameters and de-

rives Bayesian bounds for translation and rotation errors in

image registration problems. In addition, we find that image

derivatives are involved in the calculation of these bounds,

which implies that these bounds are affected by image con-

tent also. If an image contains higher frequencies, the image

is more sensitive to image transformations, and therefore pro-

duces larger registration errors.

Our experimental results demonstrate that the ZZB is tighter

than CRLB and BB for image registration problems. Here we

assumed independence of image pixels. Future work will in-

corporate spatial correlation into the image model so as to

obtain even tighter performance bounds in registration prob-

lems. In addition, performance bounds for other transforma-

tions such as affine transforms and perspective transforms,

and performance bounds on multimodality images will be de-

rived in the future.
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Fig. 2. Performance results for translation error

6. REFERENCES

[1] D. Robinson and P. Milanfar, “Fundamental performance

limits in image registration”, IEEE Transactions on Im-

0 1000 2000 3000 4000 5000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

R
eg

is
tr

at
io

n 
E

rr
or

Noise Variance

CRLB
BB
ZZB
Fourier Method
MI

Fig. 3. Performance results for rotation error

age Processing, Vol. 13, no. 9, pp. 1185-1199, Sep. 2004.

[2] I. S. Yetik and A. Nehorai, “Performance bound on

image registration”, IEEE International Conference on
Acoustics, Speech, and Signal Processing, March, 2005.

[3] K. L. Bell, Y. Steinberg, Y. Ephraim and H. L. Van Trees,

“Extended Ziv-Zakai lower bound for vector parameter

estimation”, IEEE Trans. Information Theory, vol. 43, pp.

624-637, March 1997.

[4] S. M. Kay, Fundamentals of statistical signal processing:
estimation theory, Prentice Hall, 1993.

[5] F. Lu and J.V. Krogmeier, “Modified Bhattacharyya

bounds and their application to timing estimation”, Wire-
less Communications and Networking Conference, vol.1,

pp. 244 - 248, 2002.

[6] E. Weinstein and A. J. Weiss, “A general class of lower

bounds in parameter estimation”, IEEE Transactions on
Information Theory, vol. 34, no. 2, pp. 338 342, 1988.

[7] B.S. Reddy and B.N. Chatterji, An FFT-Based technique

for translation, rotation and scale-invariant image regis-

tration, IEEE Transactions on Image Processing, vol. 5,

no. 8, pp 1266-1271,August 1996.

[8] L. G. Brown. “A survey of image registration tech-

niques”, ACM Computing Surveys, 24(4):325-376, De-

cember 1992.

[9] H. Chen and P. K. Varshney, “Mutual information based

CT-MR brain image registration using generalized partial

volume joint histogram estimation”, IEEE Transactions
on Medical Imaging, vol. 22, no.9, pp. 1111-1119, Sep-

tember 2003.

[10] H. Chen, “Mutual information based image registration

with applications”, Ph.D. dissertation, Syracuse Univer-

sity, Syracuse, NY, May 2002.

II ­ 780


