
A SAMPLING-BASED GEM ALGORITHM WITH CLASSIFICATION FOR TEXTURE
SYNTHESIS

Liu-yuan Lai, Wen-Liang Hwang

Academia Sinica
Institute of Information Science

Silong Peng

The Chinese Academy of Sciences
Institute of Automation

ABSTRACT

Research on texture synthesis has made substantial progress in re-
cent years, and many patch-based sampling algorithms now pro-

duce quality results in an acceptable computation time. How-

ever, when such algorithms are applied, whether they provide good

results for specific textures, and why they do so, are questions
that have yet to be answered. In this article, we deal specifically

with the second question by modeling the synthesis problem as

one of learning from incomplete data, and propose an algorithm

that is a generalization of patch-work approach. Through this
algorithm, we demonstrate that the solution of patch-based sam-

pling approaches is an approximation of finding the maximum-

likelihood optimum by the generalized expectation and maximiza-

tion (GEM) algorithm.

1. INTRODUCTION

In recent years, research into synthesis by sampling, such as that in

[1, 2, 3], has lead to the development of algorithms for texture syn-
thesis that produce good quality results rapidly [4, 5, 6]. Among

these methods, the work presented in [5] (referred to as patch-work

hereafter) is of special interest to us. Despite its simplicity, the al-

gorithm produces good quality results. However, two questions
crucial to understanding of the texture synthesis problem remain

unanswered. First, for what kind of textures does the patch-work

algorithm yield perceptually acceptable results? Second, what is

the solution quality of the patch-work approach? The answer to
the first question requires a more concise texture model, which -

to our knowledge - has not been developed yet. The goal of this

article is to answer the second question. We try to explain the re-

sults of patch-work algorithm as the outcome of an optimization
process by presenting the task of texture synthesis as a problem

of obtaining maximum-likelihood estimates from incomplete data.

The input texture image is the incomplete data that we observe,

while the texture image to be synthesized is part of the unobserved
data. Our proposed algorithm performs texture synthesis by solv-

ing the estimation problem with the GEM algorithm. We show

that the proposed algorithm is a generalization of the patch-work

approach. Furthermore, by analyzing our algorithm, we can ex-
plain the solution quality of patch-work algorithm.

The remainder of the paper is organized as follows. In Sec-

tion 2, we propose our algorithm. Section 3 presents texture syn-
thesis as a process of computing maximum likelihood estimates

from incomplete data. We also show that our algorithm is in fact

a GEM method. The results of running our algorithm are given in

Section 4. We then present our conclusions in Section 5.

Fig. 1. Flowchart of our algorithm

2. SAMPLING-BASED ALGORITHM WITH
CLASSIFICATION

Before describing each step in detail, we explain some key points

about the design of our approach. The proposed algorithm intro-

duces a new variable to the problem, namely, the classification of
an image’s sub-blocks, which allows us to take an abstract view of

the composition of a texture’s structure. This helps us analyze and

extract the global structure of textures, instead of only local corre-

lations in a small neighborhood. We use probability context free
grammar (PCFG) to capture the intra-relations within each class

and the inter-relations between classes. An overall flowchart of

our algorithm is shown in Figure 1.

Step 1 – Classification

The first step of the algorithm classifies the constituent elements

of an image. Here, we consider that textures comprise two classes:
foreground and background. For textures with global structures,

the placements of the foreground and background elements pro-

vide important information. We use a square block of fixed size as

the unit of elements. An image is thus divided into fixed-sized

blocks and represented by the mean of its pixel values. These
blocks are then classified as either foreground or background, de-

noted as class 0 and 1, respectively. The classification method used

here is the k-means algorithm running on RGB channels, with k
equal to 2. A k-means classifier is trained with all possible blocks
in the texture images as training data. The trained classifier is

then used to classify the fixed image blocks that have been divided

into texture images. Figure 2 shows the classification results (class

map) of a sample texture image using the classifier thus trained.

II 769142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

1 0 1 0 1 1 0 0
0 0 0 0 1 1 0 0

0 1 1 0 0 0 1 1

0 1 1 0 0 0 1 1

0 1 1 0 0 0 1 1
0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0

1 0 1 1 0 0 0 1

Fig. 2. Classification results of a sample texture image (128x128)

using 16x16 block size.

Step 2 – PCFG estimation
We now have a class map C of a texture image I . C can be seen as

a two-dimensional code. Scanning the code row by row, we treat

C as one-dimensional code sequences generated by some PCFG.
The same technique is applied to C column-wise. We denote the

languages of the two PCFGs as LH and LV , respectively; and

define the grammar for the languages as follows:

S −→ P |Q
P −→ AQ|A
Q −→ BP |B

A −→ A1|A2| . . . |An, Ai =

i timesz }| {
0 · · · 0, 1 ≤ i ≤ n

B −→ B1|B2| . . . |Bn, Bj =

j timesz }| {
1 · · · 1, 1 ≤ j ≤ n

where n is the maximum size of the run-length code. In our algo-

rithm, we set n equal to the number of blocks per column or row,

whichever is larger.

Beginning with the start symbol S, the language forks into
two branches: one (S → P) generates code sequences that start

with the terminal symbol 0, while the other (S → Q) generates

sequences starting with 1. Rules P → AQ and Q → BP de-

fine the alternations between sequences of 0s and sequences of 1s
respectively. Rules P → A and Q → B stop the infinite alterna-

tion created by the previous two rules. In the following sections,

we use R to denote rule probabilities. The probabilities of rule r
are denoted by P h(r) for horizontal PCFG and P v(r) for verti-
cal PCFG. Suitable subscripts will be added to specify which class

map the probabilities apply to. The probabilities are calculated by

counting the numbers of applications of the rules in the class map

and dividing those numbers by the total number of substitutions
applied.

Step 3 – Structure Generation
Based on the previously estimated probabilities R, we generate

a class map for the texture image to be synthesized. We assume
that if two images are realizations of the same texture, then their

PCFGs should be close to each other. Let R̂ be the probabilities

of the PCFGs derived from class map Ĉ of a synthesized texture

image. We use the function, d(R‖R̂), as a measure of the discrep-

ancy between PCFG C and PCFG Ĉ:

d(R‖R̂) =
X

r

P h(r) log
P h(r)

P̂ h(r)
+

X
r

P v(r) log
P v(r)

P̂ v(r)
. (1)

Fig. 3. The generated class map. The target image size is twice the

input image in Fig. 2

The d thus specified is the sum of two Kullback-Liebler diver-

gences. We want to find a class map Ĉ∗ with probabilities R̂∗ that

gives the smallest d(R‖R̂); however, as there is no closed form
solution to this minimization, we take the following descending

approach. Given an initial class map C, we modify it one block

at a time so that the d(R‖R̂) decreases with each iteration. At

each iteration, we choose the block whose reassignment of 0 or 1

reduces d the most, and then make the modification. This step is

repeated until d(R‖R̂) can not be reduced any further. Following

the example given in Figure 2, we show the generated class map

in Figure 3.

Step 4 – Image patching
Having generated the texture structure using the class map, we be-

gin to patch the image block by block from the upper-left corner

to the bottom-right. To determine which patch should be pasted,
we select the patch whose pixel values at the boundary regions

best match those of the existing image in terms of the Euclidean

distance. Unlike other methods, our approach classifies image

patches. Therefore, instead of one large pool of candidates to
search through, we have two smaller pools. For a target block to be

pasted, we only search for candidates in the pool of the same class,

which reduces search time. We use the graphcut method to avoid

boundary artifacts when pasting the image patches. For details of
the graphcut method, please refer to [7].

Step 5 – Iterate
After the previous four steps, we have an estimation of the param-
eters of the texture PCFGs and a synthesized texture image based

on those parameters. The newly estimated parameters are then

compared with those from the previous iteration. If the changes

between the two sets of estimations are small, the algorithm ter-
minates. Otherwise, it loops back to step one and starts another

iteration.

Relation to patch-work
The main difference between our algorithm and the patch-work
approach is that we separates image blocks into two classes. The

lack of class differentiation in the patch-work method can be re-

garded as a special case, where all the image blocks belong to a

single class. As a result, the generated class map is a constant and

II 770

the search space contains all possible image blocks. In this case,

like the patch-work approach, our algorithm would perform only

one iteration and stop.

3. GEM FOR TEXTURE SYNTHESIS

Let D be the data that includes the input texture I , and the synthe-

sized texture Î; then, P (D|R̂) = P (I, Î|R̂). The objective of our

texture synthesis algorithm is to maximize log P (I, Î|R̂) given the
input texture I . The log probability is

log P (I, Î|R̂) = log P (I, Î, Ĉt+1|R̂)

− log P (Ĉt+1|I, Î, R̂), for all t.

Taking the expectation on both sides of the above equation over

the probability distribution P (Ĉt+1|I, Ît, R̂∗t

) and using the fact

that

E{log P (I, Î |R̂)} = log P (I, Î|R̂),

we have

log P (I, Î|R̂) = E
n
log P (I, Î, Ĉt+1|R̂)

o
− E

n
log P (Ĉt+1|I, Î, R̂)

o
. (2)

The first and second term of the right-hand side of Equation (2)

can be re-written as:

E{log P (I, Î, Ĉt+1|R̂)})
=

X
Ĉt+1

P (Ĉt+1|I, Ît, R̂∗t

) log P (I, Î, Ĉt+1|R̂)

= Q(Î, R̂|Ît, R̂∗t

) (3)

E{log P (Ĉt+1|I, Î, R̂)}
=

X
Ĉt+1

P (Ĉt+1|I, Ît, R̂∗t

) log P (Ĉt+1|I, Î, R̂)

= H(Î, R̂|Ît, R̂∗t

). (4)

Substituting Equations (3) and (4) into Equation (2), we have

log P (I, Î|R̂) = Q(Î, R̂|Ît, R̂∗t

) − H(Î, R̂|Ît, R̂∗t

). (5)

Because H(Ît, R̂∗t |Ît, R̂∗t

)−H(Ît+1, R̂t+1|Ît, R̂∗t

) is the KL-

divergence of P (Ĉt+1|I, Ît+1, R̂t+1) against P (Ĉt+1|I, Ît, R̂∗t

),
it is always the case that

H(Ît, R̂∗t |It, R̂∗t

) ≥ H(Ît+1, R̂t+1|Ît, R̂∗t

).

Consequently, if we have Ît+1, R̂t+1 holds the property

Q(Ît+1, R̂t+1|Ît, R̂∗t

) ≥ Q(Ît, R̂t|Ît, R̂∗t

),

we can conclude that, at each iteration,

log P (I, Ît+1|R̂t+1) ≥ log P (I, Ît|R̂∗t

).

To calculate the Q function, we define the distribution

P (Ĉt+1|I, Ît, R̂∗t

) to be proportional to the measure of the dis-

crepancy given in Equation (1). We thus have

P (Ĉt+1|I, Ît, R̂∗t

) ∝ exp
− 1

σ2 d(R̂∗t‖R̂t+1)
, (6)

where R̂t+1 represents the rule probablilities of the PCFGs of

Ĉt+1; and σ2 is the parameter that determines the sharpness of

the distribution over the optimal class map Ĉ∗t+1

, whose PCFG

probabilities, R̂∗t+1

, give the minimum d(R̂∗t‖R̂∗t+1

). If σ2 is

chosen to be a very small value, then Equation (6) can be approxi-
mated as

P (Ĉt+1|I, Ît, R̂∗t

) ≈
(

1 if Ĉt+1 = Ĉ∗t+1

0 otherwise.
(7)

In this case, the Q function can be calculated as

Q(Î, R̂|Ît, R̂∗t

) ≈ P (Ĉ∗t+1 |I, Ît, R̂∗t

) log P (I, Î, Ĉ∗t+1 |R̂)

≈ log P (I, Î, Ĉ∗t+1 |R̂). (8)

Let us set Î = Ît in Q(Î, R̂|Ît, R̂∗t

) of Equation (8). We then

find

R̂∗t+1

= arg max
R̂

log P (I, Ît, Ĉ∗t+1 |R̂), (9)

which gives us

Q(Ît, R̂∗t+1 |Ît, R̂∗t

) = log P (I, Ît, Ĉ∗t+1 |R̂∗t+1

)

≥ Q(Ît, R̂∗t |Ît, R̂∗t

). (10)

Next, we set R̂ = R̂∗t+1

in Q(Î, R̂|Ît, R̂∗t

) of Equation (8). We

then find the next Ît+1 is

Ît+1 = arg max
Î

log P (I, Î, Ĉ∗t+1 |R̂∗t+1

). (11)

Having found Ît+1 and R̂∗t+1

, we have the property

Q(Ît+1, R̂∗t+1 |Ît, R̂∗t

) ≥ Q(Ît, R̂∗t+1 |Ît, R̂∗t

)

≥ Q(Ît, R̂∗t |Ît, R̂∗t

). (12)

Therefore, our objective log-likelihood function increases at each
iteration as follows:

log P (I, Ît+1|R̂∗t+1

) ≥ log P (I, Ît|R̂∗t

).

To obtain a synthesized image at each iteration, Equation (11) can
be rewritten as

Ît+1 = arg max
Î

log P (I, Î, Ĉ∗t+1 |R̂∗t+1

)

= arg max
Î

log

„
P (I, Î |Ĉ∗t+1

, R̂∗t+1

)P (Ĉ∗t+1 |R̂∗t+1

)

«
.

(13)

The probability P (Ĉ∗t+1 |R̂∗t+1

) does not depend on Î. There-

fore, the maximization of Equation (13) can be simplified as

Ît+1 = arg max
Î

log

„
P (I, Î|Ĉ∗t+1

, R̂∗t+1

)

«
. (14)

We deem P (I, Î |Ĉ∗t+1

, R̂∗t+1

) to be negatively proportional to a
cost function of the total pasting errors induced by image pasting.

Given a synthesized image Î , we denote the total pasting error as

‖∂Î‖ and the cost function as K(‖∂Î‖). We find Ît+1 by

Ît+1 = arg min
Î

K(‖∂Î‖). (15)

II 771

We introduce the sampling procedure used in sampling-based tex-

ture synthesizing algorithms, such as the patch-work approach, by

defining the cost function K as

K(‖∂Î‖) =

(
‖∂Ît+1‖ if |‖∂Î‖ − ‖∂Ît+1‖| < ε̃,

‖∂Î‖ otherwise.
(16)

With the defined K function, we can introduce random sampling

into our analysis. The cost of any synthesized image Î, whose

total pasting error is ε̃ distance within the image Ît+1, is the same

as that of Ît+1. Therefore, the solution of Equation (15) is not

unique for a sufficiently large ε̃, which means we can randomly

choose an image satisfying the equation as Î+1.

3.1. Correspondence with our algorithm

We now explain how our algorithm relates to the above analysis.

We initialize Î0 to be an empty set ∅. R̂∗0

is obtained by applying

the classification to I and estimating the PCFGs of the classified

result. At iteration t, we start our calculation with I , Ît and R̂∗t

.
We classify the image blocks of Ît and acquire Ĉt+1 in Step 1.

Steps 2 and 3 then modify Ĉt+1 according to the probabilities of

the grammar rules, R̂t, to obtain Ĉ∗t+1

and R̂∗t+1

, which corre-

sponds to the estimation in Equation (7) and the M-step in Equa-

tion (9). At this stage, we check if the difference between R̂∗t

and

R̂∗t+1

is small enough to terminate our algorithm. If it is not, the

next step is to find Ît+1 according to Ĉ∗t+1

. Step 4 performs this

M-step, as in Equation (15).

Remarks The class map Ĉ∗t+1

derived by Step 3 is a local mini-

mum, because it is computationally inefficient to derive the global
optimal solution. Also, pasting image blocks, as described in Step

4, to obtain Ît+1 is a greedy approach, which does not necessarily

yield the minimum total pasting error.

4. EXPERIMENT RESULTS

We show some results of our algorithm in Figure 4, along with

the results of patch-work algorithm for comparison. All the in-
put images are of size 128x128, and the output images are of size

256x256. The block size used in these demonstrations is 16x16,

and the overlapping area at the boundary is 4 pixels wide. The

same set of parameters is used for the patch-work algorithm, with
the relative matching error ε = 0.2. We use a sliding window

moving in 4-pixel steps to sample an image block’s data; thus one,

16x16 image block is sampled and its mean RGB values calculated

every 4 pixels. The collected data is used to train the 2-means clas-
sifier and paste the image.

5. CONCLUSION

In this article, we determine the kind of results derived by applying

patch-work algorithms to texture synthesis. We view such synthe-
sis as a parameter estimation problem with incomplete data, and

design a GEM-based algorithm for the estimation task. Analysing

the problem through the GEM algorithm, we show that the syn-

thesis process of our algorithm is a search for the texture image
that has the maximum likelihood of being observed. Because our

algorithm is a generalization of the patch-work approach, we show

that the outputs of the two approaches are approximations of the

maximum-likelihood optimum of the GEM algorithm.

Fig. 4. Texture synthesis results. For each test image, the input

image is on the left, the result of our algorithm is in the middle,

and the patch-work result is on the right.

References
[1] A. Efros and T. Leung, “Texture synthesis by non-parametric

sampling,” in International Conference on Computer Vision,

September 1999, vol. 2, pp. 1033–1038.

[2] Y. Wu S. Zhu and D. Mumford, “Filters, random fields and

maximum entropy (frame) - towards a unified theory for tex-
ture modeling,” International Journal of Computer Vision,

vol. 27, no. 2, pp. 107–126, 1998.

[3] Michael Ashikhmin, “Synthesizing natural textures,” in

The proceedings of 2001 ACM Symposium on Interactive 3D
Graphics, March 2001, pp. 217–226.

[4] Li-Yi Wei and Marc Levoy, “Fast texture synthesis using

tree-structured vector quantization,” in SIGGRAPH, 2000, pp.

479–488.

[5] Lin Liang, Ce Liu, Ying qing Xu, Baining Guo, and Heung ye-

ung Shum, “Real-time texture synthesis by patch-based sam-
pling,” ACM Transactions on Graphics, vol. 20, no. 3, pp.

127–150, July 2001.

[6] Steve Zelinka and Michael Garland, “Towards real-time tex-

ture synthesis with the jump map,” in EGRW ’02: Proceed-
ings of the 13th Eurographics workshop on Rendering, 2002,
pp. 99–104.

[7] Vivek Kwatra, Arno Schdl, Irfan Essa, Greg Turk, and Aaron
Bobick, “Graphcut textures: Image and video synthesis us-

ing graph cuts,” ACM Transactions on Graphics, SIGGRAPH
2003, vol. 22, no. 3, pp. 277–286, July 2003.

II 772

