
RECOVERING DRAWING ORDER FROM OFFLINE HANDWRITTEN IMAGE USING

DIRECTION CONTEXT AND OPTIMAL EULER PATH

Yu Qiao, Makoto Yasuhara

University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, Japan

{qiaoyu, yas}@math-sys.is.uec.ac.jp

ABSTRACT

This paper addresses the problem to recover drawing order

from single-stroked offline handwritten image. The

recovery problem is formulated as to find the smoothest

path to cover all the edges in the graph representation of an

input image. The two main contributions are: (1) we

introduce direction context to calculate the smoothness

between edges; (2) the smoothest path is found by solving a

new graph problem: the optimal Euler path problem. An

O(n+m+nlog(m/2)) time algorithm is developed to find the

optimal Euler path in a graph with 4-degree nodes only. The

double traced lines are identified using the maximum

weighted matching of general graph. Experimental results

on about 13,000 static images converted from the online

data in the Unipen database demonstrated the utility of our

methods.

1. INTRODUCTION

It is well known that handwriting recognition can be divided

into two types: offline and online, which differ in the input

device and information available. The online recognition

makes use of online information of pen-tip movement, and

achieves higher recognition performances [1], [2], [3], [4]

than the offline recognition does. Importance of the online

information in the recognition task is also supported by

psychological researches [5], [6].

In this study, we focus on the problem to recover the

drawing order (pen-tip trajectory) from a single-stroked

offline static handwriting image. This can be seen as to

convert two-dimensional image I to one dimensional vector

sequence {(xt, yt), t=1,2,…,n}, where (xt, yt) denotes the

position of pen-tip at time t in vector form. The recovery of

drawing order is seen as the inverse problem of human

handwriting process. Like many inverse problems, our

recovery problem is ill-posed in the sense that there are

multiple drawing paths possible to result in the given image.

Therefore it is necessary to introduce a guiding principle to

convert the problem into the well-posed one. Here, we adopt

the minimum energy principle that the human write usually

in the smoothest way with the least energy cost. Then there

are two fundamental questions: (1) how to define the

smoothness, (2) how to find the path that maximizes the

smoothness. In this paper, this first question is answered by

introducing direction context; and the second question is

answered by defining and solving the optimal Euler path

problem.

The approaches toward recovering drawing order

information can be roughly divided into two main

categories: local tracing method and global searching

method. In the local tracing method, the next path is

selected at each point of junction according to the present

local configuration and tracing history [4], [5], [7].

Advantages of this method come from their simplicity and

low computational cost, however, the method is sensitive to

noise and it is extremely difficult to design general heuristic

rule(s) that can be applied to various styles of handwriting.

In the global search methods, a graph model is built to

represent the input image and then the problem is to find a

path (single stroke) and paths (multiple strokes) within the

graph [2], [8]. However, these methods may lead to

computational explosion. To avoid this, some hybrid

methods were proposed, which combined the local analysis

and global analysis [3], [9], [10]. But they cannot ensure the

global optimization.

In this paper, we proposed a novel approach to the

recovery problem, which can find globally optimal solution

in polynomial time. The rest of the paper is organized as

follows: the method to construct the graph model is

described in Section 2. Section 3 introduces the direction

context. The Optimal Euler Path problem is formulated in

Section 4. In Section 5, we present a method to find double

traced lines using the maximum weighted matching. The

experimental results are given and discussed in Section 5.

Finally, we conclude the paper in Section 6.

2. GRAPH MODEL

In this section, we describe the method to construct graph

model G from the skeleton of an input handwriting image.

We used a smoothing filter to reduce the noise such as

peaks and holes in the input image and calculate the

skeleton using thinning algorithm [11]. To construct G, we

need to extract vertex and segment from the skeleton at first.

A segment represents a part of the stroke in the skeleton and

a vertex corresponds to a local geometrical point, where the

II ­ 7651­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

segment starts/ends or multiple segments joint. Because the

skeleton resulted from thinning process may include

unwanted spurious outputs, the segments detected above

can be classified into two types: real segment (r-segment)

and spurious segment (s-segment). The r-segment

corresponds to a part of the real stroke; and the s-segment

results from the thinning and does not exist in the original

handwritten image. These undesirable s-segments will

distort the structure of the original pattern, thus we need to

identify them at first. We use the method described in our

former work [9] to identify the s-segments. Then a cluster of

the connected s-segments is transformed into a node.

Terminal vertex and individual crossing vertex in the

skeleton are transformed also into the nodes in G and the

real segment is seen as an edge of G.

3. DIRECTION CONTEXT

Because the thinning algorithm is sensitive to noise, it is not

reliable to calculate the smoothness directly from only the

skeleton [4], [9]. In this paper, direction context descriptor

is introduced to estimate the smoothness from the original

image. The direction context uses a set of vectors to

describe the distribution of pixels along the stroke in the

original image. Thus it can represent the general direction of

this stroke part. The direction context can be seen as a

special type of shape context, which had been used

successfully in shape matching and object recognition [12].

(a) Stroke area (b) Diagram of bins

Fig. 1 Direction Context

Suppose edge e is incident to node N as shown in Fig. 1a.

p is a pixel on e neighbor to N. w is the stroke width of e

near N. S denotes a set of black pixels in the original image

I. For each black pixel pk in I, its nearest pixel Nm(pk) in the

skeleton is defined as,

}|),({minarg)(SkeletonpppDispN ssk
p

km

s

,

where Dis(pk, ps) is the Euclidean distance between two

pixels pk and ps. We find line L in the skeleton with length

3w by tracing from p along e and obtain the associated

stroke part S of L by,

S={pk | Nm(pk) L}.

 Calculate the set of vectors originating from point p to all

the pixels in S and then summarize these vectors by a coarse

histogram using the same technology in [12]:

)},()(:{#),(rbinpqSqrhp , (1)

where the bins are shown in Fig 1.b. The histogram is called

the direction context of e at N. For two edges ei and ej, we

calculate direction context hi(r,) at first and estimate the

smoothness as the angle a, which maximizes (2):

,

2

0),(),(

)],(),([

2

1
maxarg),(

r ji

ji

ji
rhrh

rhrh
ees (2)

In experiments, we calculate the direction angle ai and aj of

Si and Sj at pi and pj by using Principal Component Analysis

[9] on the coordinates of pixels in Si and Sj respectively.

Note the first eigenvector of PCA corresponds to the main

direction of a set of vectors. Then we initialize =|ai-aj| and

tune to get the angle maximizing s(ei, ej).

4. OPTIMAL EULER PATH

The recovery of drawing order can be seen as the problem

of finding the smoothest path passing through each of the

edges at least once. The edge-traversing problem in graph

was first studied by Euler in 1736, known as the famous

Königsberg bridge problem. Euler showed that an

undirected graph has Euler path, which visits each edge

exactly once iff all but two nodes are of odd degree. The

two odd nodes must be a start node and/or an end node of

the Euler path. In the next, we will define the optimal Euler

path problem and describe the algorithm to solve it.

4.1 Continuous Cost and Optimal Euler Path

In graph G, two incident edges ei and ej connected to a node

are referred to a continuous pair (ei, ej). The continuous cost

c(ei, ej) is given for each of the continuous pairs in G. In this

paper, we set the continuous cost c(ei, ej)= -s(ei, ej). The

graph model is represented by G=(V, E, C), where V and E

is the set of nodes and edges, respectively and C denotes the

set of continuous cost. The total number of continuous cost

(size of C) is kd(N k)(d(N k)-1)/2, where d(N k) is the degree

of N k. The continuous cost of path l = e1,e2,..,en is defined as

the sum of the continuous cost of every two adjacent edges

along l. Formally,

bin(r,)

f(e1,e2,..,en) = ic(e i, e i+1). (3)

The Euler path that minimizes the continuous cost is

called optimal Euler path.

4.2 Finding Optimal Euler Path

The direct idea of finding the optimal Euler path is to

enumerate all the Euler paths and calculate the continuous

cost for each of the paths to select the one with the

minimum continuous cost. However, the number of the

Euler paths increases exponentially with the number of the

nodes. Note that the number of the Euler paths in a graph is

greater than 2n, where n is the number of the nodes of

degree 4 in the graph. Before presenting our algorithm to

find the optimal Euler path, we introduce some definitions

as follows:

Edge Continuity Relation (ECR) at node N is defined as a

set of continuous pairs, which covers all the edges

S

e

p
3w

N

p
r

II ­ 766

connected to N. Formally, for node N of degree 2k, we have

ECR(N)={(ei1, ei2)}, i=1,2, …,k (4)

where (ei1, ei2) denotes a continuous pair. The total number

of ECRs possible at N is (2k-1)(2k-3)...1. We define the

node continuous cost as:

 c(ECR(N))= ic(ei1, ei2) (5)

It is not hard to see that there is a mapping from an Euler

path to ECR(Nj) at each node Nj. That is, given an Euler

path l=e1,e2,..,en, if every two adjacent edges (ei, ei+1) in l is

regarded as a continuous pair, then we can obtain a unique

ECR(Nj) at each node Nj. Then we can reduce Eq. (1) to

the ECR form:

f(l) = jc(ECR(Nj)) , for all Nj V (6)

Fig. 2 Merge two circuits into one by changing ECR at

node (the dash lines inside the circle represent ECR)

Assume that there is no node of degree higher than 4 in G,

we have the following efficient algorithm to find the

optimal Euler path.

(1) Finding all the ECRs

For node Ni connected by 4 edges e1 - e4. There are 3 cases

of ECRi
j (j=1,2,3): ECRi

1={(e1, e4), (e2, e3)}, ECRi
2={(e1, e3),

(e2, e4)} and ECRi
3={(e1, e2), (e3, e4)}. We calculate the

node continuous cost for every ECRi
j according to (5).

(2)Connecting the edges

For each node Ni, find ECRi
m with the minimum node

continuous cost. Then we connect the edges at Ni into

path(s) according to ECRi
m. If there is only one path

obtained, it must be the optimal Euler Path. Otherwise, there

are a path from the start to the end node and several circuits.

We use oi, i=1,2,3,…,K to denote the path and the circuits.

(3) Calculate merge cost

Take any two circuits/path oi1 and oi2 jointing at node Ni. If

we change ECRi
m at Ni to one of the other two ECRs,

denoted by ECRi
m1 and ECRi

m2, then oi1 and oi2 will be

merged into one circuit/path (Fig. 2). Assume

c(ECRi
m1) c(ECRi

m2), we define the merge cost of oi1 and

oi2 at node Ni as:

Merge(oi1, oi2, Ni)= f(ECRi
m1)- f(ECRi

m), (7)

Merge(oi1, oi2, Ni) must be non-negative. Based on this, we

define the merge cost of oi1 and oi2 as:

)},,({),(
2121 min

21

NooMergeooMerge
ii

ooN
ii

ii

. (8)

(4) Finding the optimal Euler path

Build circle graph Go={O, R}, O is a set of K vertices,

each of which corresponds to a path/circle oi found in step

(2). If two circles oi and oj have jointing node(s), we add

edge ei-j between them into R and weight w(ei-j) is set as

Merge(oi, oj). It is not difficult to find that for merging the K

path/circles into one path l, we need to find spanning tree H

which contains all the vertex and K-1 edges in Go. The

continuous cost of path l can be written as:

He

j

K

i

i

j

ewoflf)()()(
1

. (9)

To find optimal Euler path l with minimum continuous

cost f(l), we only need to minimize the second item w(ej)

in Eq. (9). This is the classical Minimum Spanning Tree

(MST) problem. It can be solved by the Kruskal algorithm

or Prim algorithm [13].

e3e1

It is not hard to see that the algorithm above is self-proved

optimal. The complexity of the proposed algorithm is

estimated as: calculating the node continuous cost in O(n),

finding path/circles in O(m), searching the minimum

spanning tree in O(nlog(m/2)) if the Kruskal algorithm is

used. So totally the complexity is O(n+m+ nlog(m/2)) where

n, m are the number of nodes and edges in Go, respectively.

5. DOUBLE TRACED LINES

Double tracing lines (d-lines) are common in human writing

[3]. To recover the whole drawing order, we need to

identify these d-lines. The d-line problem is related with

odd nodes [9], [10]. A d-line normally locates between two

odd nodes. There are two types of the odd node [10]: 1) T-

node (the gray node in Fig. 3 at which an edge (T-leg)

terminates as shown in Fig. 3a, 3b or returns back as shown

in Fig. 3c, 3d), and 2) Y-node (the black node shown in Fig.

3 to which a double-traced edge (Y-leg) and its two

continuous edges (Y-hands are connected). Based on this, d-

line can be divided into two types: (1) Y-T type: the d-line

between Y-node and T-node (Fig. 3c, 3d), where the d-line

is a T-leg of T-node or a Y-leg of Y-node, (2) Y-Y type: the

d-line between two Y-nodes (Fig. 3e).

The difficulty to find the d-lines comes from the fact that

it is not easy to determine which edge connected to the odd

node is T/Y-leg depending merely on the local structure of

the node. The robust decision should be made in more

global fashion. We achieve this by using maximum

weighted matching algorithm [14], the details of which were

described in our former work [10].

(a) (b) (c) (d) (e)

T-leg T-leg Y-leg

Y-hands

Y-T

d-line
Y-T

d-line

Fig. 3 Types of odd nodes and d-lines

Y-Y

d-line

e1

e2

e3

e4

oi1

Ni

ECRi
m

oi2

e2

Ni

ECRi
k1

e1

e2

e3

e4

Ni

e4

merge

ECRi
k2

II ­ 767

After finding all the d-lines, for a Y-T type d-line, replace

the two hands and the d-line totally by a new edge of G (Fig.

4a) and for a Y-Y type d-line, combine the d-line and the

two Y-nodes into a new node of degree 4, connected by the

four hands (Fig. 4b). The node generated from the Y-Y type

d-line has two possible ECRs: ECR1={(ei1, ej1), (ei2, ej2)}

and ECR2={(ei1, ej2), (ei2, ej1)}. For each of the continuous

pair, for example (ei1, ej1), calculate the SLALOM

smoothness si1-j1 of path ei1-l-ej1 [2], [9]. Let sm=max{si1-j1,

si2-j2, si1-j2, si2-j1}, the node continuous cost is given by

c(ECR1) = (si1-j1+ si2-j2)/ sm

 c(ECR2) = (si1-j2+ si2-j1)/ sm. (10)

After merging, there will be no d-line in G, so we can

recover the order of edges by finding the optimal Euler path.

6. EXPERIMENTS

We have applied our methods on the two sets of single

stroked handwritten images. The first set consists of 145

offline images collected by ourselves, which includes

cursive English words, Chinese characters, Japanese Kana

characters and several artificial patterns. The second set

includes 13,306 static images converted from the online

data in the Unipen database [15]. Each stroke, randomly

selected from the Unipen database, is converted to a single

stroke offline image by connecting the adjacent points

through the straight lines. The width of the line is set as 3.

For node with degree more than 4, the ECR is set as the one

where all the lines traversing through node crosses each

other. Totally 93.7% of all the samples are recovered

successfully. Several samples are shown in Fig. 5.

We also executed experiments to compare the recognition

performance of offline image and recovered path using the

Unipen 1.a database [15]. The k-nearest neighbor classifier

using Euclidean distance was selected as the recognition

engine. Among the 15,612 samples, 30% were selected

randomly for testing. The results are summarized in Table 1.

We find that the recognition rates of recovered path are

higher than those of offline image.

Table 1 Comparison of Recognition Results

(k is the num of neighbors)

k 1 3 5 10
Recovered Path 93.6% 93.5% 93.2% 93.6%
Offline Image 90.4% 90.0% 90.6% 90.0%

Fig. 5 Experimental Results

7. CONCLUSION

A new method has been proposed to recover the drawing

order of the handwriting character from its 2D static image.

We introduced the direction context to estimate smoothness

and converted the recovery problem to the optimal Euler

path problem. A polynomial algorithm was presented to

solve optimal Euler path in graph with 4-degree nodes only.

More generally, our method, due to its globally optimal

nature, can efficiently convert a graph to a sequence of

edges. It is well known that the string is much easier and

more efficient to be dealt with than the graph. By choosing

properly the method to calculate continuous cost, we can

preserve the structure of the graph into the sequence.

N1 N4 Edge e
N2 N4N1

We consider to study in future graph analysis and

recognition problem by using the optimal Euler path.

8. REFERENCES

[1] R.Plamondon, S.N.Srihari, "On-Line and Off-line Handwriting Recognition: A

Comprehensive Survey", IEEE Trans. on PAMI, Vol.22, No. 1, pp.63-84, 2000

[2] T. Huang and M. Yasuhara, "Recovery of Information on the Drawing Order of

Single-Stroke Cursive Handwritten Characters from Their 2D Images," IPSJ Trans.,

vol. 36, no. 9, pp. 2,132-2,143,Sept. 1995.

[3] Y. Kato and M. Yasuhara, "Recovery of Drawing Order from Single-Stroke

Handwriting Images", IEEE TPAMI, vol.22, no.9, pp.938-949, 2000.

[4] D.S. Doermann and A. Rosenfeld, "Recovery of Temporal Information from Static

Images of Handwriting", Int'l J. Computer Vision, vol. 15, pp. 143-164, 1995.

[5] R. Plamondon and C.M. Privitera, “The Segmentation of Cursive Handwriting: An

Approach Based on Off-Line Re-covery of the Motor-Temporal Information”, IEEE

Trans. IP, vol. 8, no. 1, pp.80-91, 1991.

[6] Babcock, M.K., & Freyd, J.J. Perception of dynamic information in static

handwritten forms. American Journal of Psychology, vol. 101, pp. 111-130, 1988

[7] S. Lee and J.C. Pan, "Offline Tracing and Representation of Signatures," IEEE

Trans. SMC, vol. 22, no. 4, pp. 755-771, 1992

[8] S. Jager, "Recovering Writing Traces in Off-Line Handwriting Recognition: Using

a Global Optimization technique," Proc. 13th Int'l Conf. Pattern Recognition, pp.

150-154, 1996.

[9] Y. Qiao and M. Yasuhara: "Recovering Dynamic Information from Static

Handwritten Images", Proc. IWFHR Oct. 2004 Tokyo, Japan

[10] Y. Qiao, M. Nishiara and M. Yasuhara; " A Novel Approach to Recover Writing

Order From Single Stroke Offline Handwritten Images", pp.227-231 Proc. ICDAR

2005

[11] T. Y. Zhang, Ching Y. Suen: A Fast Parallel Algorithm for Thinning Digital

Patterns. Commun. ACM 27(3): pp. 236-239 (1984)

[12] S. Belongie, J. Malik and J. Puzicha. Shape Matching and Object Recognition

Using Shape Contexts. IEEE PAMI 24(24), pp. 509-522, 2002

[13] Graham, R. L. and Hell, P. "On the History of the Minimum Spanning Tree

Problem." Ann. History Comput. vol. 7, pp. 43-57, 1985

[14] Edmonds, J. and Johnson, E.L. Matching, Euler tours and the Chinese postman.

Math Programming 5 (1973), 88-124.

[15] Guyon, I., Schomaker, L., Plamondon, R., Liberman, M. & Janet, S. "UNIPEN

project of on-line data exchange and recognizer Benchmarks", Proc. of ICPR, pp. 29-

33, October 1994

N3

N2 N3
d-line N2merge

(a)
ei2

Ni

Nj

d-line

ei1 ei2 ei1

N
convert

ej1
ej2

ej1
ej2

(b)
Fig. 4 Merge YT-type d-line and YY-type d-line

II ­ 768

