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ABSTRACT

Image restoration and enhancement problems are often considered
using a solution based on a model for the image’s power spectral
density (PSD). This paper considers a new PSD model for images
through modification of a previously considered isotropic model.
The new model and an algorithm for estimating its parameters are
presented. Several simulations considering PSD estimation for im-
ages corrupted by additive noise, distortion, and resolution reduc-
tion are presented to demonstrate the improvements made with this
new modelling approach.

1. INTRODUCTION

A classic approach to the problems of image restoration and en-
hancement considers modelling and processing in the Fourier do-
main. One standard Fourier domain technique is the Wiener filter-
ing solution, which determines a linear filter serving to minimize
the mean-squared error (MSE) of the processed image as com-
pared to the ideal case. This filter is found as a function of some
linear degradation process as well as the power spectral density
(PSD) functions of the input process and any additively interfering
processes. The accuracy of the Wiener solution is naturally depen-
dent on the accuracy of the functions modelling the degradation
and PSDs, which are typically unknown in the practical case. Var-
ious common techniques for estimating these unknown functions
are discussed in [1], as applied to the problem of image restoration.

The focus of this paper is on PSD modelling of images. Spe-
cific motivation came from recent work by these authors [2], which
presented a generalized structure for linear MMSE super-resolution
of a high resolution (HR) image from multiple degraded low res-
olution (LR) versions. The solution to this super-resolution prob-
lem requires knowledge of the desired HR image’s PSD, which
is unknown in the practical case and must be estimated from the
degraded LR images. Similar motivation is also found in recent
work of Aly and Dubois [3], which considered single-image res-
olution enhancement based on an underlying HR spectral model.
While the presence of distortion and noise interferes with spec-
trum estimation in the classic restoration scenario, in these resolu-
tion enhancement scenarios the estimation process is even further
hampered due to aliasing.

One of the primary goals of this paper is thus to determine
an effective approach for estimating an image’s PSD in the pres-
ence of noise, distortion, and aliasing. Although this is an ill-
posed problem, a reasonable estimate can be determined based on
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some assumptions of the general structure of typical image spectra.
For this purpose, a general parametric PSD model is constructed
based on observations of test images. A numerical technique for
model estimation is also presented. While the focus of this paper is
on the applications of restoration and enhancement, the presented
spectral modelling technique is of use for other Fourier-based ap-
proaches to image processing problems. For example, an accurate
parametric model may be of use in certain encoding applications
since it provides a representation of an image’s statistics through a
small number of bits.

There is not a large amount of previous work on image-specific
spectral modelling. Several previous approaches have considered
modification of standard 1D signal approaches to a 2D framework
(some survey of various types of 2D PSD models are presented
in portions of the books [4, 5]). However, this paper contends that
these sort of approaches (e.g., a 2D ARMA model) typically do not
represent images well in comparison to models designed specifi-
cally for images. Another popular modelling approach is based on
an isotropic (that is, rotationally invariant) decaying exponential
correlation function [6, 7]. This model is well-suited for a general
variety of images and can be represented using only two param-
eters (one decay and one scaling coefficient). One drawback to
an isotropic model is that the correlation and spectral functions of
a typical image are not rotationally invariant. Because of this, a
non-isotropic spectral model is presented in this paper. An earlier
approach by these authors used a different technique that intro-
duced non-isotropic features over the standard isotropic model [8],
however this method was of use for a smaller class of images con-
taining straight edge features.

The paper discusses the characteristics of image spectra in
Section 2, and presents the parametric model and a numerical al-
gorithm for its estimation in Section 3. Simulation results are then
presented in Section 4. Finally, Section 5 provides concluding re-
marks and highlights future work.

2. IMAGE SPECTRAL CHARACTERISTICS

The presented parametric model will be constructed from an im-
age’s non-parametric PSD function. The non-parametric model is
commonly obtained directly from the image by squaring the mag-
nitude of its 2D discrete Fourier transform (DFT). Assuming an
M × N pixel image c[m, n], this is

S[k, l] =

∣∣∣∣∣
M−1∑
m=0

N−1∑
n=0

c[m, n]W km
M W ln

N

∣∣∣∣∣
2

, (1)
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where WM = e−j(2π/M). This is a sampled version of the nor-
malized periodic spectrum Sxx(ejωx , ejωy ). Note that (1) is an
unscaled version of the standard 2D periodogram.

Since the DFT magnitude is circular-shift invariant, spatial in-
consistencies across the image borders (left and right or top and
bottom) create horizonal and vertical edge effects that lead to false
increases of magnitude along the ωx and ωy axes of S(ejωx , ejωy ).
To mitigate the effect of these false edges, the image is first sub-
jected to a spatially-variant blurring operation along the borders
to blend the features of opposing sides into a smoother transi-
tion without altering the majority of the image. This operation
is performed as an alternative to windowing, which corresponds to
convolving the spectrum by the window’s squared magnitude re-
sponse. As the spectra of typical images are highly dominated by
the low frequency terms, convolution by the window response can
often cause more harm than good. For similar reasons sliding win-
dow methods are avoided (it is important to emphasize that while a
PSD model is being used, standard images are not stationary ran-
dom processes). Herein, all mention of S(ejωx , ejωy ), which is
also referred to as the “true spectrum,” assumes its samples are ob-
tained directly through the squared magnitude of the DFT of the
border-blended image.

The typical characteristics of image spectra are as follows.
The PSD decays quickly from its peak component at the origin
of the normalized spectrum, typically dropping several orders of
magnitude within a very short frequency range. This is true ex-
tending radially from the origin in all directions, although the trend
of decay often varies with the angular direction. Because of this it
is in many ways simpler to consider the spectrum in polar coordi-
nates, although due to spatial-domain sampling it is necessary to
bandlimit the polar representation such that it falls within a single
period of the Fourier space.

3. PARAMETRIC MODELLING

One commonly considered image spectral model [6, 7] is found
from the continuous isotropic autocorrelation function

R(x, y) = exp[−α(x2 + y2)1/2], for α > 0 (2)

The Fourier transform yields the PSD function

S(Ωx, Ωy) = 2πα(α2 + Ω2
x + Ω2

y)−3/2, (3)

which can be appropriately bandlimited for use with sampled data.
Transformed to polar coordinates, this isotropic spectral model is
clearly independent of the angular coordinate, allowing

S(Ωr) = 2πα(α2 + Ω2
r)

−3/2. (4)

This model can provide a reasonably accurate description of the
image statistics with two parameters (α and a scaling constant).

As was noted in the previous section, a rotationally invariant
spectrum is not appropriate for all images. However, previous
results using (4) have found that its radially decaying shape can
generally serve as a good model for images. This paper therefore
seeks to improve upon this existing model by allowing its shape
to change dependent on angular coordinate. In this non-isotropic
modification the parameter α becomes a function of the angular
coordinate Ωθ , resulting in

S(Ωr, Ωθ) = 2πα(Ωθ)(α(Ωθ)
2 + Ω2

r)
−3/2. (5)

The rectangularly bandlimited version is defined through

SBL(Ωr, Ωθ) =

{
S(Ωr, Ωθ) Ωr < π

min(| cos(Ωθ)|,| sin(Ωθ)|)

0 otherwise.
(6)

Since α(Ωθ) varies as a continuous function of the angular
coordinate in (5), some form of approximation is required for its
parametric representation. In this paper, α(Ωθ) is identified only
at regularly spaced samples over [0,π). (PSD symmetry allows
complete representation using only half the typical interval of Ωθ .)
The complete α(Ωθ) is then found through a cubic spline interpo-
lation. The periodic nature of α(Ωθ) can be exploited in com-
puting this interpolation. While an improvement can certainly be
found through allowing nonuniform sampling of α(Ωθ), this will
require additional encoding of specific angular information. For
typical images α(Ωθ) should not vary too much over Ωθ , open-
ing the possibility for improved coding efficiency, e.g., through a
differential-based parameter coding. Finally, note that even a con-
tinuous α(Ωθ) leads to a discontinuity at Ωr = 0 in (5) and (6).
However, in practice these PSD models are sampled in frequency
and this component can be parameterized separately or computed
as a function of the α(Ωθ) parameters.

3.1. Numerical Parameter Estimation

The main focus of this parameter estimation is selection of α(Ωθ)
at specific pre-assigned samples on Ωθ . A numerical optimization
approach is used to tune the parameters from the non-parametric
PSD, which is taken directly from the image. Since the given im-
ages will often be degraded (noisy, blurred, and of reduced reso-
lution) it will be necessary for the parameter estimation process to
maintain a degree of robustness against these forms of degradation.

The given bandlimited non-parametric PSD, SBL(Ωr, Ωθ), is
divided into K contiguous angular zones, each spanning π/K ra-
dians. The information in each zone is used to determine one
sample of α(Ωθ) corresponding to a Ωθ in the center of the zone
(the standard isotropic PSD is equivalent to selecting only a single
zone). Within each zone, the trend of radial decay is found by nu-
merically integrating over Ωθ , leaving a function of Ωr . As typical
images’ spectra decay so significantly from the peak at DC, an un-
weighed numerical fitting will typically conform to the lower fre-
quency components while sacrificing accuracy at higher frequen-
cies. To compensate for this the PSD is first subjected to a base 10
logarithmic scaling, providing the function

S̄(Ωr) =

∫ bu

bl

log10 (SBL(Ωr, Ωθ)) dΩθ (7)

where bl and bu are the lower and upper angular boundaries of the
zone. For a numerical solution to this integration, a sampled repre-
sentation of SBL(Ωr, Ωθ) is first found by interpolating its value at
the points of a separable polar mesh from the given rectangularly
sampling of S(ejωx , ejωy ). The integration of (7) is then found
through simple averaging. In this paper the logarithmic scaling
is performed prior to numerical integration. Note that while the
spectrum is rectangularly periodic, the integration (7) is calculated
only for Ωr ≤ π so that each zone is examined over the same radial
span. This essentially discards a large span of radial information
in some zones, but this is not especially critical since the decay in
PSD magnitude tends to level off at these high frequencies.

The final model parameters are determined from the zones’
average radial decay functions (7). The PSD is first considered
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isotropic (that is, as a single zone) to numerically determine an ini-
tial decay αi and scaling constant. The scaling constant is locked
and used in each zone, where the zone-specific samples of α(Ωθ)
are numerically computed using αi as an initial guess. Both the
initial parameter selection and subsequent zone-specific parame-
ter selection phases use the same iterative numerical optimization
algorithm.

This algorithm seeks to minimize the mean-squared difference
between the logarithm of the model in (4) and the measurement of
(7). That is, between log10 (S(Ωr)) and S̄(Ωr). This is done for
samples of Ωr in (0, π], specifically ignoring the component at
Ωr = 0, the inclusion of which was found to decrease the model
accuracy. All angular zones are considered independently and the
parameters are selected using the MATLAB Optimization Toolbox
function fmincon, which seeks a constrained minimum to a func-
tion of several variables. For the initial isotropic optimization, αi

and the scaling constant are determined under the constraint that
they are positive. After locking the scaling constant, the secondary
zone-specific optimizations only require minimization over a sin-
gle variable. Optimizing the decay of each zone individually offers
a reduction in computational complexity, through computing the
mean-squared differences of 1D functions instead of the complete
2D surface and through minimizing several functions of one vari-
able instead of a more complicated function of several variables.

4. SIMULATION RESULTS

To examine the performance of the proposed PSD model, it will be
used along with models for noise and distortion (the later two of
which are assumed known) to design a linear MMSE restoration
and enhancement filter. Without resolution change, this is simply
the standard Wiener restoration problem [1, 4, 5]. The addition
of resolution enhancement to the problem requires modification
which can be found in [2]. This modification factors the effects of
aliasing into the MMSE solution.

For full examination of the spectral model, the solution will be
found for three cases: using the original image’s non-parametric
PSD obtained via (1), using the parametric PSD obtained through
the proposed numerical fitting of the original non-parametric PSD,
and using the parametric PSD obtained through the proposed nu-
merical fitting of the degraded image’s non-parametric PSD. This
last case is representative of the semi-blind problem where the true
statistical model remains unknown. The 512× 512 boat and Lena
images of Fig. 1 are used for simulation.

(a) (b)

Fig. 1. Original images used for testing proposed model.

The effects of using the presented non-isotropic model and pa-
rameter selection algorithm are shown in Fig. 2. The boat image
was corrupted by additive white Gaussian noise (AWGN) with a

variance of 200. The model (6) was then numerically fit to the
non-isotropic PSD for a varying number of angular zones. PSNR
performance curves are shown for the parametric model deter-
mined from both the original and noisy PSDs. For comparison,
the PSNR of the noisy image and its reconstruction using the non-
parametric spectrum are shown. Both models show improvement
as the number of zones increases, but the improvement steadily
decreases beyond a low number of zones. Interestingly, the model
obtained from the noisy image performs better than that obtained
from the original. This is caused by the parameter selection al-
gorithm, which has superior tuning performance with the addition
of some noise. This example highlights interest in improving the
algorithm. Based on this result, all subsequent results in this paper
are obtained using 15 distinct angular zones.
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Fig. 2. PSNR of denoised boat image for varying number of angu-
lar zones. Original image corrupted by AWGN with σ2 = 200.

Fig. 3 shows the performance for MMSE reconstruction from
a decimated but otherwise uncorrupted boat image. Estimation
from the low resolution image fits the parameters using the aliased
spectrum, but constructs the model (6) based on the desired output
resolution. There are very minor differences between the perfor-
mances of the two parametric models, demonstrating the estima-
tion approach is robust against aliasing. For all cases the model
consistently performs about 1dB below the ideal case, and 3dB
above a bilinear interpolation.
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Fig. 3. Reconstruction performance for image resolution enhance-
ment from decimated original.
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In the remaining simulations, the image is first subjected to
Gaussian blur, then combined with AWGN, and finally reduced in
size by a factor of four through (2, 2)-fold decimation. Figs. 4 and
5 consider the boat image and examine the effects of varying the
amount of blurring and noise, respectively. Fig. 4 shows the per-
formance of the model obtained from numerical estimation using
the degraded image remains about 1dB below the ideal, while the
parametric model obtained from the original image moves closer
to optimal performance as the amount of blurring increases. The
performance for both cases moves closer to that of bilinear recon-
struction as the blurring increases. The initial increase in perfor-
mance at low levels of blurring is a result of the blurring function
acting as an anti-aliasing filter prior to decimation. Fig. 5 shows
consistent performance with increasing noise and concurs with the
result of Fig. 2 in demonstrating a slight improvement in estima-
tion performance in the presence of noise.

Finally, the Lena image is considered in Fig. 6 with noise, blur-
ring, and varying levels of decimation. As this image is smoother
than the boat, the performance of the model is closer to the ideal
performance. Bilinear reconstruction naturally performs quite poorly.

5. CONCLUSIONS AND FUTURE WORK

The presented modification to a common isotropic image PSD was
shown to improve reconstruction performance. A numerical algo-
rithm for the model estimation was presented, along with simula-
tions demonstrating performance of the model, and the robustness
of the estimation process under degraded image conditions.

Some results indicated that while the estimation algorithm did
perform well, improvement is possible and should be a subject for
future work. To better evaluate the performance of the model for
restoration and enhancement applications, future results will also
be examined using subjective or alternate (to PSNR) evaluation
metrics. An additional topic for future work involves extending
the model to video. Finally, in super-resolution there are multiple
degraded source images available which can be considered collec-
tively to improve the spectral estimation.
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Fig. 4. Reconstruction of boat image with varying Gaussian blur,
AWGN of σ2 = 50, and (2, 2)-fold decimation.
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Fig. 5. Reconstruction of boat image with Gaussian blur of σ =
0.6, AWGN of varying σ2, and (2, 2)-fold decimation.
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Fig. 6. Reconstruction of Lena image with Gaussian blur of σ =
1.5, AWGN σ2 = 50, and varying decimation.
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