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ABSTRACT

The objectives of this paper is to present a novel adaptive 

edge extraction algorithm, based on processing of the local 

histograms of small non-overlapping blocks of the output of 

the first derivative of a narrow 2D Gaussian filter.  It is 

shown that the proposed edge extraction algorithm provides 

the best trade off between noise rejection and accurate edge 

localisation and resolution.  The proposed edge detection 

algorithm starts by convolving the image with a narrow 2D 

Gaussian smoothing filter to minimise the edge displacement, 

and increase the resolution and detectability.  Processing of the 

local histogram of small non-overlapping blocks of the edge 

map is carried out to perform an additional noise rejection 

operation and automatically determine the local thresholds.   

1. INTRODUCTION 

Edge detection is one of the most important areas in lower 

level computer vision. The main problem existing in many 

edge detection approaches is that they are sensitive to noise. 

To achieve usable results, the process of edge detection is 

usually preceded by the application of a 2D Gaussian 

smoothing filter. There is a conflict between the precision of 

edge detection and the effect of the noise removal. Another 

problem encountered with gradient based edge detectors is 

the difficulty to define appropriate threshold values to the 

gradient image [1]. In fact, automatic edge thresholding is a 

series drawback of the gradient based edge detection 

methods. Only a few works deal with automatically setting 

the threshold parameters [2, 3, and 4]. Limitations of global 

thresholds are typically due to poor quality of the source 

material, existence of multiple object classes of varying 

contrast, and non-uniform illumination. A possible solution 

that provides a good trade off between edge localization and 

noise rejection based on local histogram analysis has been 

proposed [5]. In this method the edge localization is 

maintained through the use of the smallest possible 

Gaussian filter, and noise rejection is achieved by 

performing smoothing on the local histogram prior to local 

threshold calculation using a 1D Gaussian filter with 

standard deviation  =1. This method was further improved 

in terms of threshold calculation speed using the method 

named as Differential Local Histogram Analysis [6]. The 

Local histogram analysis method extracts edges through the 

processing of a 4x4 non overlapping blocks of the output of 

the first derivative of a narrow 2D Gaussian filter. The 

method starts by convolving the image with a narrow 2D 

Gaussian filter with standard deviation =0.5 in order to 

minimise the edge displacement. The gradient magnitude is 

then computed using the Prewitt operator. Processing of the 

local histogram of small non overlapping blocks of the 

thinned gradient magnitude is carried out to perform an 

additional noise rejection and automatically determine the 

local threshold for each block. In this method non uniform 

quantization technique [7] was employed on the thinned 

gradient magnitude prior to the processing of the local 

blocks. This quantization step is necessary in order to be 

able to conduct the processing on such small block. This is 

due to the fact that the number of gray levels of the local 

histogram is greater than the number of pixel in a block, 

which means that, the statistics of the individual local 

histograms become insignificant. The quantization step 

provides a robust representation of the local histogram 

without any loss of information. Experiment results showed 

that this method can provide the best trade off between edge 

localization and noise rejection compared with the canny 

edge detector [5]. However, a problem associated with this 

method is at the quantization step. The non uniform 

quantizer is applied on an ad hoc basis to all pixels of the 

thinned gradient magnitude image. Therefore, and in the 

presence of noise this leads to the need of larger local 

histogram smoothing filter in order to minimize the effect of 

noise at the thresholding stage. This will result in greater 

computations and the risk of eliminating edge pixels due to 

the large smoothing applied to the local histogram.

The work presented in this paper attempts to answer this 

problem. It is called Adaptive Differential Local histogram 

Analysis (ADLHA), and follows on from our previous work 

[6], and Voorhees and Poggio [3] work on modelling the 

gradient magnitudes arising from noise. In the proposed 

method the gradient magnitude quantization is made 

adaptive based on the noise estimation of the filtered 

gradient magnitude. Using the adaptive quantization not 

only produces a more robust representation of the local 

histogram, it also acts as a noise suppression process. 

Furthermore, computation is reduced as only smaller 1D 

Gaussian filters are used for local histogram smoothing and 

the method will work better for a larger range of signal to 

noise ratio.
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Figure 1: Thinned gradient magnitude histogram 

2. ADAPTIVE DIFFERENTIAL LOCAL 

HISTOGRAM ANALYSIS.

The first stage of the edge detection algorithm performs the 

smoothing and the edge enhancement on the image [6].  The 

output of this stage is a thinned gradient magnitude image 

which is then processed by the ADLHA method in order to 

extract the edge pixel from the noise. Prior to local 

histogram processing, the quantization is performed on the 

thinned gradient magnitude based on the noise estimated 

from it as discussed bellow. 

Voorhees and Poggio [3] showed that if the image noise 

consists of additive Gaussian noise then the filtered 

magnitude of the image has a Rayleigh distribution.  

According to [3] the background noise is at the low end of 

the gradient magnitude histogram which is characterized by 

the Rayleigh distribution. The standard deviation of the 

noise, r, can be estimated by fitting the histogram of the 

filtered magnitude of the image to the Rayleigh distribution 

and simply measuring the location of the peak as shown in 

figure 1. This represents the thinned gradient magnitude of 

the Lena image shown in Figure 4. 

Due to the non-maximal suppression, the histogram of 

the thinned gradient magnitude contains an enormous peak 

at gray level zero, and since it’s a systematic effect this peak 

is eliminated and the histogram of Figure 1 starts from the 

next bin. In this work only a moderate estimation is required 

as it is only used for gradient magnitude quantization and no 

threshold decision is taken at this stage. We can assume that 

all pixels with gray levels less than or equal to ( r) are 

background noise and those above it are a combination of 

both significant edges and low noise ones. Therefore, the 

quantization will be performed by shifting the starting point 

of the quantizer from zero to the estimated value of r. Here, 

the quantization is made adaptive and will depend on the 

noise in the image. In images with low noise the peak will 

be at or very near the gray level zero, and as noise is 

increased so will the peak position and all pixels with 

gradient magnitude less than ( r) will be quantized as zero, 

resulting in the elimination of all noisy gradients from any 

further processing that is carried out in the edge extraction 

method. The adaptive quantization not only produces a 

more robust representation of the local histogram, it also 

acts as a noise suppression process.  The adaptive quantizer 

used in this paper is shown in figure 2. 

Since the smoothing method is been applied to the 

quantized local histogram after the thinning process, the 

first peak is ensured to be around the quantized level (0) of 

the local histogram, and in the case of a bimodal histogram 

the quantized gray level value that corresponds to the 

position of the valley between the two peaks can be taken as 

the threshold value. The threshold value can be obtained by 

differentiating the smoothed histogram. As the derivation 

step occurs after histogram smoothing. By the derivative 

rule of convolution, histogram smoothing and 

differentiation can be done in one step by convolving the 

histogram wave form with the first derivative of the 

smoothing operator. The first valley can be determined as 

the first zero crossing of the differentiated histogram.  
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Figure 2: Adaptive 12-Level Nonuniform 

Quantizer 

3. PERFORMANCE ANALYSIS

Real images and a synthetic image are used to investigate 

the performance of the proposed algorithm qualitatively and 

quantitatively. The proposed ADLHA method is compared 

with the previous LHA and the unimodal thresholding 

method [5]. The measure, Q, proposed in [8], which is the 

product of the proportions of correctly classified true edges 

and false edges, is used for the quantitative assessment. In 

order to calculate the measure Q, a synthetic image with its 

true edges known in advance is used. This image is 

composed of random shapes with different gray level 

values, overlaid with Gaussian noise with different standard 

deviation. Figure 3 shows the synthetic image and the 

resultant edge maps obtained from the different thresholding 

methods. The SNR of the image is  30, which is taken as 

the square of the ratio of the gray level difference with the 

highest probability of occurrence in the whole image over 

the noise standard deviation. Figure 3, shows that, better 

results are obtained using the adaptive quantization using a 

Gaussian filter with  =0.8, where, the results obtained 

using the existing method are under thresholded when the 

local histogram smoothing is carried out using a Gaussian 
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filter with =1 and is a little over thresholded for the global 

unimodal threshold method, and the existing method when 

the filter standard deviation is increased to  =1.5, which 

causes a loss of some of the week edges. 

The same observation can be seen from the results 

obtained using natural images in figure 4. Furthermore, the 

figure of merits, Q, as a function of SNR, shown in figure 5 

confirms the results and it’s clearly seen that, the proposed 

method performs better over a larger range of noise level 

using smaller filter for histogram smoothing than the other 

methods. 

4. CONCLUSION 

In this paper, a more robust and improved edge detection 

method based on local histogram analysis which provides 

accurate edge localization while maintaining very good 

noise rejection is presented. This method not only has the 

ability to reject more noise through the adaptive 

quantization, but also reduce the computation required for 

smoothing, hence, increases the edge classification speed. 

Experiments show that the proposed method is more 

practical, effective and robust compared with the existing 

local histogram analysis method. 
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Figure 3: Results of edge detection on synthetic image 

(a) original image, (b) proposed method, (c) LHA  =1 

[5], (d) Unimodal algorithm in [2] 
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Figure 4: Results of edge detection on real images (a) 

Original image, (b) proposed method, (c) LHA  =1 [5], 

(d) Unimodal algorithm in [2].  
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Figure 5: Figure of merit, Q against SNR
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