
LOCAL INFORMATION BASED OVERLAID TEXT DETECTION BY CLASSIFIER FUSION

Ahmet Ekin

Video Processing Group, Philips Research, Eindhoven, The Netherlands

ahmet.ekin@philips.com

ABSTRACT

When implemented in hardware, image-processing algorithms

should be robust to memory limitations because some hardware

architectures may not have memory size as large as the whole

frame size. Although this is not generally a problem for low-level

processing, higher-level understanding, such as object detection,

demands novel solutions because the available information may, in

some cases, be very local, e.g., only a partial view of the object

could fit in the available memory size. In this paper, we propose a

novel hardware-oriented overlaid text detection algorithm that can

detect text with height as large as five times the memory size. The

algorithm integrates a connected component (CC)-based algorithm

with a texture-based machine learning approach. The CC-based

algorithm uses character-level features in the horizontal direction

whereas the texture-based algorithm extracts block-based features

to integrate information from all directions. Furthermore, the

texture-based algorithm employs a support vector machine (SVM)

to benefit from the strength of machine learning tools. In order to

detect text of large font size, we also propose a novel hardware-

oriented, height-preserving multi-resolution analysis. Finally, the

results of the two classifiers as well as color and edge cues are

used for the final pixel-based text/non-text decision.

1. INTRODUCTION

Text overlays are added onto TV broadcast to supplement the

audio-visual content with additional metadata. Because of its

information value, overlaid text detection has mainly been

considered in the context of video indexing and retrieval. In

contrast, our main application is visual quality improvement. This

difference is important because most storage and retrieval

applications can afford to have offline and distributed (in the sense

that the task can be assigned to a non-TV device) processing

whereas visual quality improvement should often be performed

online by using very limited computational and memory resources

of a TV set. In this context, memory size refers to the number of

image lines available for processing at a single instant. In software,

whole frame or video information can usually be used; but only a

few lines of image data are available in hardware. In the following,

we will mainly focus on the implications of the memory

limitations to overlaid text detection algorithms.

In general, overlaid text detection involves two steps: 1) text

candidate extraction, and 2) text verification. In the first stage, the

smallest spatial processing units, such as pixels and blocks, are

processed independently from each other and are assigned as text

candidate or not. In the second stage, spatially connected

detections are merged for region-level morphological analysis,

e.g., by using region bounding box information. In one or both of

these steps, the state-of-the-art text detection algorithms rely on

non-local information, which can even be at the frame level. In this

paper, we define the local region as lines of data supported by the

hardware memory. For example, Figure 1 shows the local region

for the yellow line in red. This value is 11 lines in our case. The

memory size could be much less than the height of text, but the

width is the same as the image width. The problem we would like

to solve in this paper is to be able to robustly detect text of any

size by processing only limited information available in the

memory. This is a challenging problem especially when the text

height is greater than the memory size as shown in Figure 1.

Figure 1: The local area for the line in yellow is highlighted in

red (total of 11 lines); we use only the information from the

local region for text detection and verification.

The existing text detection algorithms exploit color

connectedness (connected component, CC-, based approaches)

and/or textural features [1][2]. Recently, machine learning tools,

such as neural nets [3], or SVMs [4], are also applied to determine

the text/non-text boundary. In these algorithms, non-local

information is needed mainly for multi-resolution image analysis

(for large-sized text detection), for text segmentation (for

extraction of word and text line boundaries), and finally for

suppression of false alarms.

 Having constraints not applicable to the existing approaches,

we propose an integrated framework that employs a CC-based and

a texture-based algorithm. CC-based algorithm utilizes character-

based features in the horizontal direction; hence, it processes each

image line independently from the others. In contrast, texture-

based algorithm uses block-based features to use information from

all directions. In order to take advantage of machine learning tools,

an SVM with a linear kernel has been trained to make text/non-text

decision for the texture-based algorithm. We also propose a novel

height-preserving horizontal scaling method for multi-resolution

analysis. In the verification stage, we also use color and edge

features to fully utilize the existing information. As a result, the

proposed algorithm is able to robustly detect text whose height can

be five times bigger than the memory size.

 Section 2 explains the text candidate extraction that is

comprised of edge-based preprocessing, CC-based detection, and

texture-based algorithm. After that, Section 3 describes the text

verification stage where the individual detections are fused.

Section 4 presents the experimental results while Section 5

concludes the paper.

II 753142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

2. TEXT CANDIDATE EXTRACTION

In this section, we first explain the edge-based preprocessing step

that determines the region-of-interest for the CC- and texture-

based algorithms that are explained in Sections 2.2 and 2.3,

respectively.

2.1. Edge-based preprocessing
The insertion of text onto video should result in large intensity and

color differences from the background so that the viewers can read

the overlaid text easily. In this section, we use this feature to

eliminate non-text regions to speed up the overall processing.

We first detect horizontal, Gh(x,y), and vertical, Gv(x,y),

derivatives at each image location (x,y) by applying a 2x2 mask.

After that, the edge strength, ES(x,y), is computed for the pixel

(x,y) as in Equation 1, where we prefer L1 norm to the Euclidean

distance because of the computational reasons. The pixels having

edge strength greater than the adaptively computed threshold

value, GThrHigh, are assumed to include text regions if there are

any. The value of GThrHigh is determined as a function of the

average edge strength as shown in Equation 2, where k is a

constant coefficient (We found k = 5 as an appropriate value not to

lose any pixels at the text boundaries), M and N are image width

and height, respectively. Figure 2 demonstrates the output of this

stage proving that strong edges should exist at the transitions

between text and natural video content.

� � � � � �yxGyxGyxES vh ,,, �� (1)

 � ���
� ��

�
M

x

N

y

High yxES
NM

k
GThr

1 1

, (2)

Figure 2: Strong edges (shown in green) accumulate around

the text region.

2.2. CC-based character-level analysis
When analyzed at a character level, text regions show: 1) large

horizontal gradients that have opposite signs at character-to-

background and background-to-character transitions, and 2) a

horizontally smooth single colored region within a character stroke

(the color of the text character may be varying in the vertical

direction). This section presents a method that exploits these

observations to detect text regions by processing image intensity

line-by-line.

 Wong and Chen [5] proposed maximum gradient difference

(MGD) feature to boost the first characteristics of the overlaid text.

This feature computes the difference between the maximum and

the minimum horizontal gradient values in a window. The key idea

behind the feature is that when a window is large enough to

include at least one background-to-character and one character-to-

background transition, there will be a large positive and a large

negative gradient. This will be valid independently from the

relative brightness of the text with respect to the background, that

is, text can be brighter or darker than background and MGD is

invariant to this. The window length should be determined as a

function of the largest expected font size. In [5], text regions are

identified as those having large MGD values by comparing them

with a pre-defined threshold value. However, this tends to merge

the text regions with the line structures in the background. This

might not have been a problem if we had access to the whole frame

information; however, because of our constraints, it causes

problems for the morphological analysis in the verification stage.

Furthermore, the maximum and the minimum operations are

sensitive to noise.

 To remedy the above problems, we first modify the MGD

according to the second observation, also suggested in [6], and

then use relative location and magnitude of the positive and

negative gradients. We integrate the second observation into MGD

by requiring low gradient values at the locations between the large

gradients. However, this alone will not suffice to prevent the

merging of characters and line structures. Furthermore, noise-

related large MGD values still survive. Therefore, we also add the

location and the magnitude constraints to the MGD. The location

constraint makes sure that the large positive and negative gradients

occur at the opposite sides of the window center. The magnitude

constraint verifies that there is not a big discrepancy between the

magnitudes of the largest positive and the largest negative

gradients by checking that the smaller one, in the absolute sense, is

bigger than the half of the larger one. Figure 3 shows a sample

result of this step where the pixels having high text likelihood are

highlighted in green. Please note that only predefined

neighborhood of each strong edge is processed for CC-based

analysis.

Figure 3: The result of the CC-based character-level analysis is

highlighted in green.

2.3. Texture-based text detection by SVM
Character-level analysis, explained in the previous section,

analyzes each line independently from the vertical neighbors. As a

result, some false alarms may occur at locations that do not have

horizontal textures but have only strong vertical edges. To

incorporate local texture information in other directions, this

section introduces block-based texture analysis. The text likelihood

of a block is computed by a pre-trained SVM. This type of analysis

II 754

adds the power of the machine learning tools to our algorithm.

Because of the constraints about the available information and the

compute-power, we also introduce some novel aspects to the

texture-based text detection.

Texture-based analysis involves first extraction of a set of

features in a window of fixed size, 11x11 in our case because the

memory size is 11 image lines. We extract two features per pixel:

the magnitudes of the horizontal and vertical gradients. When a

machine-learning tool, such as an SVM, is used, a supervised

training stage is needed to train the classifier with the selected

features. This is done offline and only once. After the training of

the classifier, when a new image is presented, the same set of

derivative features are extracted and fed into the classifier that

determines the text likelihood of the input feature vector. In order

to detect text of varying size, multi-resolution analysis of the

image, as shown in Figure 4, is needed. The results across multiple

scales are integrated to decide whether a site can be text or not.

In our case, the usual multi-resolution analysis is impossible

because the memory size does not allow scaling in the vertical

direction. This presents a unique challenge for font-size-

independent detection of text. To this effect, we propose to scale

the group of lines only in the horizontal direction. This makes

scaling independent of memory size. Figure 5 shows the proof of

the height-preserving property of the proposed scaling method. In

contrast to the usual multi-resolution as shown in Figure 4, this is a

sub-optimal solution. However, our thorough analysis has shown

that the proposed scaling method robustly works for text detection

when the length of a word is long enough (3-4 letters). The reason

for such robustness stems from the fact that the classifier identifies

large variations in texture (measured by the derivatives) as text.

When the text is large, the window in the original image is not big

enough to capture those variations; hence, it is necessary to do the

scaling. The proposed horizontal scaling fits close characters into

the window so that they can be identified as text.

Figure 4: Multi-resolution view of the input image (the spatial

resolution decreases 2x2 to the right).

Figure 5: Height-preserving image scaling is optimal for

hardware implementations (the spatial resolution decreases

only in the horizontal direction).

For the detection, we use three scales as shown in Figure 5.

The detection result from the first scale is accepted as text when

the SVM result is greater than zero. The second and third scales

are only accepted if the SVM detection result is greater than 0.5. In

this way, we can detect text whose height is as large as five times

the memory size. Figure 6 shows the result of texture-based

detection with SVM. In order to speed up the processing, we use

linear kernel for the SVM. This makes it possible to define the

classification with a cross-correlation operation. Furthermore, we

apply the SVM only to the strong edges that are detected in

Section 2.1 to further speed up the processing.

Figure 6: The result of the SVM-based text detection algorithm

3. TEXT VERIFICATION

In the text verification stage, we aim to decide whether individual

detections from character and texture analysis can be accepted as

text and, at the same time, we attempt to determine the most

accurate boundary of the text region. In addition to the detection

results, we also use color cues and strong edge count for the final

decision.

Because we have to decide locally, the steps below are

followed for each group of lines (a group of lines is shown in red

in Figure 1). We first check for whether there is any detection from

both stages. If there is detection, we apply the following steps:

1. Reduce the color of the image to 8 levels. These levels are

determined adaptively for each local region.

2. Find the regions both texture-based and character-based

algorithms have classified as text.

3. Compute the start and the end points of each text region

determined in the texture-based analysis. This involves

morphological dilation operation to connect close but

disconnected regions.

4. Determine the text color from the results of character-

based detection and color segmentation in step 1. Text

color is assigned as the color index that has the largest

number of pixels in the text mask created in Section 2.2.

5. Starting from the center of each region found in step 3, use

character-based algorithm to refine the start and the end of

the selected region, compute the length of the region, and

if the length is large enough (greater than 10 pixels),

accept the region as text.

6. Find the regions that are identified as text by the character-

based algorithm, but not supported by the SVM result. Re-

run SVM over the scaled version of each such region with

a lower threshold. If identified as text by the rerun of

SVM, accept each such region as text.

The above verification stage uses our observation that

character-based algorithm results in more accurate text boundaries

whereas texture-based algorithm is more effective in the reduction

of false alarms.

II 755

4. RESULTS

In order to evaluate the proposed algorithm, we have used data

downloaded from the Open Video Project web page [7] and

captured within Philips. The videos from [7] are mostly of

352x240 size whereas those in the Philips set are of size 720x576.

The Open Video Project set has compression artifacts; however,

Figure 7, where the detected text regions are highlighted in green,

shows the robustness of the proposed algorithm to such artifacts as

well as variations in background. Figure 8 shows some detection

results with few false positives in highly textured areas. The result

on the right in Figure 8 demonstrates that the scene text can also be

detected with the proposed algorithm. Figure 9 is an example to

the detection of large-sized text. The text segments “Markte” and

Morgen” in Figure 9 are more than five times larger than the

available memory size for processing. The detection of text with

large font size is made possible by the height-preserving multi-

resolution analysis explained in Section 2.3 and exemplified in

Figure 5.

We quantified the performance of the algorithm as a function

of text height (in pixels) when the memory size is 11 lines. For

this, we define the TFM measure as the absolute count of true

detections-false alarms-missed text regions. We also report the

performance in precision and recall measures, defined in Equation

3. For text having height smaller than 12, the TFM rate is 99-9-7

(91.6% precision, 93.4% recall); for text having height between 12

and 25, the TFM rate is 213-15-22 (93.4% precision, 90.6%

recall); and for text having height less than 35, the TFM rate is 89-

4-14 (95.6% precision, 86.4% recall). As text height increases, the

precision rate improves at the expense of a decrease in the recall

rate. The proposed algorithm was able to detect 12 regions that

have text height larger than 60 pixels without any false alarms.

The main reasons for the missed text are small width of the text

block, such as single digits, and low contrast between the

background and the text. The false alarms have mainly resulted

from the textured background.

 Precision = (the # of correct texts=T) / (the # of detections= T+F)

Recall = (the # of correct texts=T) /(the # of texts = T+M) (3)

Figure 7: Examples of detections of text on natural scenes

(Data are from the Open Video Project [7]).

Figure 8: Examples from the Philips set; scene text can also be

detected (right), occasional false alarms in textured areas (left)

Figure 9: Text of large size is still detectable; the height of text

is more than five times larger than the memory size.

5. CONCLUSIONS

In this paper, we proposed an integrated, hardware-oriented text

detection algorithm. Among other things, the main contribution of

this paper is the robust detection of text with very limited local

information. To achieve this, we introduced an integrated

algorithm that exploits both character-level and block-based text

features. The proposed algorithm can handle large-sized text as

long as the text height is not larger than five or six times the

number of available image lines for processing. The proposed

algorithm shares some of the weaknesses of the existing

algorithms. Textured background may sometimes cause false

alarms while characters with single or two letters and the text

regions having little contrast may be missed.

6. REFERENCES

[1] K. Jung, K.I. Kim, A.K. Jain, “Text information extraction in

images and video: a survey,” Pattern Recognition, 37:977-997,

2004.

[2] R. Lienhart, “Video OCR: A Survey and Practitioner’s Guide,”

In Video Mining, Kluwer Academic Publisher, pp. 155-184,

Oct. 2003.

[3] R. Lienhart and A. Wernick, “Localizing and Segmenting Text

in Images, Videos and Web Pages,” IEEE Trans. on CSVT,

12:4:256 -268, Apr. 2002.

[4] K.C. Kim, H.R. Byun, Y.J. Song, Y.W. Choi, S.Y. Chi, K.K.

Kim, Y.K. Chung, “Scene text extraction in natural scene

images using hierarchical feature,” In Proc. IEEE ICPR, 2005.

[5] E. K. Wong and M. Chen, “A new robust algorithm for video

text extraction,” Pattern Recognition, 36:1397-1406, 2003.

[6] Personal communication with Paola Carrai, Philips, Monza,

Italy, Jan. 2004.

[7] The Open Video Project, Online, http://www.open-video.org/

II 756

