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ABSTRACT

This paper presents a new adaptive lifting scheme

transform for detecting user-selected objects in a sequence

of images. In our algorithm, we first select a set of object

features in the wavelet transform domain and then build an

adaptive transform by using the selected features. The

adaptive transform is constructed based on adaptive

prediction in a lifting scheme procedure. Adaptive

prediction is performed such that, the large coefficients in

the high-pass component of the non-adaptive transform

vanishes in the high-pass component of the adaptive

transform. Finally, both the non-adaptive and adaptive

transforms are applied to a given test image and the

transform domain coefficients are compared for detecting

the object of interest. It is shown that the presented

algorithm is robust to the noisy environments with

reasonable signal-to-noise ratio. We have verified our

claims with experimental results on noisy 1-D signals and

images.

1. INTRODUCTION

In the past few years, wavelet-based methods for detection

and enhancement tasks have received considerable

attention within the image processing community. The

Discrete Wavelet Transform (DWT) has properties that

makes it an ideal transform for the processing of images

encountered in image understanding applications,

including: efficient representation of abrupt changes and

precise spatial information, ability to adapt to high

background noise, ability to adapt to uncertainty about

object properties, ability to adapt to changing local image

statistics, and existence of the fast processing algorithms.

Inherent ability for the efficient approximation of

smooth signals is one of the prominent reasons for the

success of wavelets in various applications like

compression. But real-world signals are not always as

smooth as classical wavelet transform approaches request.

Adaptive approaches are required to overcome

discontinuities encountered in real-world signals.

For the smooth input signals, most of the coefficients

in the high-pass component of the wavelet transform are

zero. One may conclude that the remaining coefficients in

the high-pass component, which have large magnitude,

may be considered as the features of the input signal. This

fact is already used to design optimal lifting wavelet filters

for data compression [1].

In this paper for a given object of interest, we design

an adaptive lifted wavelet transform so that the large

coefficients in the high-pass component of the non-

adaptive transform, vanish in the high-pass component of

the adaptive transform. Both of the non-adaptive and the

adaptive transform, are applied to any given test image.

An algorithm is presented for detecting the object of

interest by comparing the high-pass component

coefficients of the non-adaptive and the adaptive wavelet

transform.

Section 2 is devoted to a brief survey of the existing

adaptive lifting scheme methods. Dual lifting wavelet

transform is described in section 3. Our proposed

detection algorithm is described in section 4 followed by

experimental results in section 5. Finally, in section 6, the

future works for increasing performance of the presented

algorithm, are described.

2. ADAPTIVE LIFTING

Many adaptive approaches have been developed by

various researchers. Best basis algorithm [2] is a good

example of a common adaptive approach where we choose

a wavelet basis which depends on the input signal. The

basis is selected by minimizing a cost function such as

entropy in the wavelet packet transform tree. But it is a

global adaptive approach and the chosen basis is fixed for

the entire block of data.

Lifting scheme, presented by Sweldens [3], provided

a good structure for creating adaptive wavelet transforms.

Lifting scheme presents a means for decomposing wavelet

transform into predict and update stages. One may adapt

prediction or update stage filters to the local signal

properties and build desired adaptive wavelet transforms.

Claypoole et. al. [4] proposed an adaptive lifting

scheme for image compression and denoising applications.

They switch between different linear predictors at the

predict stage: higher order predictors where the image is

locally smooth and lower order predictors near edges to

avoid prediction across discontinuities. One will have to

keep track of the chosen filters at each sample, to

guarantee perfect reconstruction at the synthesis stage.

They had to apply update stage first, in order to avoid

sending information on chosen predictor for the

reconstructor.

An update first strategy is also utilized by Piella and

Heijmans [5]. Unlike Claypoole et. al., they choose a fixed

predictor and take adaptiveness into the update stage in

such a way that no bookkeeping is required.

Trappe and Liu [6] also adapt predict stage. They try

to minimize the predicted detail signal by designing a

data-dependent prediction filter. They present two
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different approaches. The first one is a global adaptivity

and its goal is to minimize norm of the entire detail signal.

In the second approach, the coefficients of the prediction

filter vary over time based on a local optimization

criterion. Similar approaches had been earlier proposed by

other researchers like Gerek and Çetin [7], Boulgouris et.

al. [8], and Chan and Zhou [9].

3. DUAL LIFTING STEP 

The fast lifted wavelet transform using a dual lifting

step [10] has shown in Figure 1. Here,
oldh� and

oldg� are

the low-pass and high-pass analysis filters of the non-

adaptive wavelet transform that are applied to the input

signal x , respectively. The Prediction filter t� is applied

to the low-pass component λ and the output ω is

subtracted from the old high-pass component
oldγ , thus

yielding the new high-pass component γ  as follows.

( )oldx h tω = ∗ ∗� � (1)

old oldx gγ = ∗ � (2)

oldγ γ ω= − (3)

where, ∗ denotes the convolution operator.

Fig. 1. The fast lifted wavelet transform using a dual lifting step.

4. DETECTION ALGORITHM

4.1. Prediction Filter in 1D Case

In this subsection we show how to find the coefficients of

the prediction filter t� , such that large coefficients of the

non-adaptive wavelet transform’s high-pass component,

vanish in the high-pass component of the adaptive lifted

wavelet transform. Let s be the signal of interest.

Applying the non-adaptive wavelet transform to this signal

will yield the following low-pass (λ ) and high-pass

(
oldγ ) components.

1

old old

k j k j
j

s h s hλ λ + −= ∗ ⇒ =∑� �
(4)

1

old old old old

k j k j
j

s g s gγ γ + −= ∗ ⇒ =∑� �
(5)

Given the prediction filter t� , high pass component of

the adaptive lifted wavelet transform (γ ) is obtained as

follows.

1k j k j
j

t tω λ ω λ + −= ∗ ⇒ =∑� �
(6)

old

k k kγ γ ω= − (7)

If we consider a coefficient in the old high-pass

component
oldγ , with index k′ , which has large

magnitude and try to vanish its corresponding coefficient

in the high-pass component γ , based on eq. (7), we would

have

0 old

k k kγ ω γ′ ′ ′= ⇒ = (8)

and by substituting ω from eq. (6), we obtain

1

old

j k j k
j

tλ γ′ ′+ − =∑ �
(9)

In the other hand, it is known that, the high-pass

analysis filter for the adaptive lifted wavelet transform is

given by the following equation [10].

2( ) ( ) ( ) ( )new old oldg z g z h z t z= + � �� � (10)

Clearly, the summation of the filter coefficients is zero,

0new

k
k

g =∑ �
(11)

which is equivalent to

0k
k

t =∑ �
(12)

Let p be the length of the prediction filter t� . Now if

we let v be the number of selected large coefficients of

the old high-pass component with indices 1 2, , , vk k k′ ′ ′…

and try to vanish their corresponding coefficients in the

new high-pass component. Considering eq. (9) and eq.

(12), the system of equations in (13) is formed.

When 1v p+ = , eq. (13) could be solved by the

Gaussian elimination algorithm. When 1v p+ > , Gauss-

Newton method may be used to solve eq. (13) in order to

obtain the coefficients of the prediction filter t� .
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4.2. Detection Algorithm, 1D Case

After finding the desired prediction filter, the following

algorithm could be used for detecting the 1D signal of

interest, for any given test signal.

1. The signal of interest s and the test signal x are

assumed to be the input arguments.

2. Select a non-adaptive wavelet transform, and

values of the parameters p  and 1v p≥ − .

3. Find the desired prediction filter t� , as described

in section 4.1.

4. Apply the non-adaptive and the adaptive lifted

wavelet transforms to the test signal x and find

the high-pass components
oldγ  and γ .

5. Construct an empty vector D with the same

length as 
oldγ  and γ .

6. Compare each coefficient of
oldγ with the

corresponding coefficient in γ and if it is

decreased, find the vanishing percentage (VP)

and write it in vector D .

7. Sweep vector D with a window of the same

length as signal s , and find sum of the VPs for

each windowed location. The location of the

maximum value for this sum, could be considered

as the location of the signal s , in the test signal

x .

4.3. Detection Algorithm, 2D Case

Our detection algorithm for 1D signals, could be expanded

to the 2D case for detecting an object of interest in a given

test image. We may consider the 2D object as a set of

separable 1D signals corresponding to rows and columns

of the 2D object. The algorithm for 2D case is as follows.

1. Choose a reference block ( )n mO × which

encompasses the object of interest and test image

( )N MT ×  as the input arguments.

2. Consider row oi of the object O as the 1D

‘signal of interest’ and find prediction filter
o

r

it�  as 

described in section 4.1. Repeat this for

1, ,oi n= … .

3. Consider column oj of the object O as the 1D

‘signal of interest’ and find prediction filter
o

c

jt�

as described in section 4.1. Repeat this for

1, ,oj m= … .

4. Sweep test image T with a 2D window of the

same size as object O .

5. Apply non-adaptive and adaptive lifted wavelet

transforms to the rows and columns of the

windowed image. Compare corresponding

coefficients similar to the 1D case and find sum

of the VPs. The location of the maximum value

for this sum, could be considered as the location

of the reference block   in the test image T .

Finding prediction filter for each row and column of

the reference block could be a time consuming task. But in

many applications, like image retrieval, we only need to

compute the prediction filters once, and use the same

filters for detecting object of interest in any chosen test

image from the database.

Due to the following reasons, noise or slight

deformations in the object of interest, would not have

considerable impact on the resulted VPs.

• Most of the large values in the high-pass

component remain among large values in the noisy

signals as well.

• Both of the non-adaptive and the adaptive

transforms are applied to the same noisy signal,

therefore vanishing Percentage values will not

experience a considerable change.

5. EXPERIMENTAL RESULTS 

In the first example, we have created a random test signal

including a signal of interest in the middle part shown in

Figure 1.a. Biorthogonal wavelet (bior2.2) with 2

vanishing moments for analysis and synthesis filters, were

chosen for the non-adaptive wavelet transform. Parameter

v and prediction filter length, p , both were set to 10.

Resulted windowed sum of the VPs from 1D signal

detection algorithm are plotted in Figure 2.b and Sum of

the Squared Error (SSE) values of the classic template

matching are plotted in Figure 2.c. The results of these

algorithms for the noisy case (by adding white Gaussian

noise) with 3dB SNR, are also plotted in Figure 2.d and

Figure 2.e, respectively. Maximum value in the windowed

sum of VPs points to the correct location in both of the

cases while minimum value of SSE do not occur in the

middle part of the test signal for the noisy case.

In the second example, we have chosen a 512 by 512

synthesized image shown in Figure 3, from our database of

comprehensive experiments. Test image is generated by

adding 3dB white Gaussian noise to the original

synthesized image. Reference block in the first image,

Figure 3.a, and its 3 true matches in the test image, Figure

3.b, are shown by illuminated boxes around the blocks.

Biorthogonal wavelet (bior2.2), were chosen for the non-

adaptive wavelet transform. Parameter v was set to 15 and

p was set to 16. The array that holds sum of the VPs, is

plotted in Figure 3.c. The high peaks truly represents the

location of the reference block in the test image.
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(a)

(b)

(c)

(d)

(e)

Fig. 2. a) Test signal, b) Windowed sum of VPs, c) Template

matching, d) Windowed sum of VPs for noisy test signal, e)

Template matching for noisy test signal.

(a) (b)

(c)

Fig. 3. a) Sample photo including illuminated reference block, b)

Test image, c) Mesh plot of the array that holds sum of the VPs.

6. CONCLUSIONS

In this paper, we have presented a new adaptive lifted

wavelet transform based algorithm for detecting an object

of interest in a given test image. We have only examined

the potential of the new adaptive lifted transform for

object detection. Many variations on the presented

detection algorithm could be designed to improve its

performance for detecting noisy and degraded forms of the

desired object. For example, one may consider deeper

levels of the wavelet packet transform tree for detecting

dilated and condensed objects. Moreover, one may use

several different image instances of the desired object for

designing prediction filter of the adaptive transform. This

would make the algorithm more robust to the slight object

deformations in the test image. We are currently

investigating the robustness properties of our detection

algorithm and comparing it with several existing object

detection schemes.
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