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ABSTRACT

This paper presents a new method for image registration for
real natural scenes. The method is based on the observation
that most natural scenes are actually 3-D. If the assumption
of weak perspective is violated, the error in image registration
induced by parallax is increased, leading artifacts or blurs in
image mosaic. Our method first applies the affine-invariant
point detector in scale space. After clustering feature point
pairs, an initial global transformation is formed based on ma-
jority correspondence. The global transformation is evalu-
ated in each region at certain scale determined by inliers. The
global model is optimized for local registration by minimiz-
ing Least Square Error. This method is more robust than stan-
dard image registration algorithms on images subject to un-
calibrated camera motion.

1. INTRODUCTION

The common approach to video mosaic is sequential registra-
tion [1]. Pairwise images are registered, i.e. the second image
to the first image, the third to the second and so on. The
images are aligned to a common reference frame based on
the concatenation property of homographies. However, reg-
istration error also propagates along the sequence, and even-
tually the accumulated error becomes visible, bringing in ar-
tifacts or blurring in the panorama. There are many sources
of registration error, such as the white noise, moving objects,
lens distortion, parallax and occlusion. Since feature-based
algorithms are based on the sparse feature points, the distur-
bance from above sources could misallocate the feature points
and the parametric transformation. Various approaches have
been proposed to deal with the error accumulation problem
[2]. Most algorithms focus on improving the registration be-
tween two images. Harris-DoG [3] [4] and Harris-Laplacian
[5] [6] detector are stable across affine change. Global adjust-
ment, such as bundle adjustment [7], optimizes over all the
homographies. Methods evenly distribute the error across the
sequence as posterior processing are described in [8]. Uyt-
tendaele [9] proposed a local adjustment method to determine
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Fig. 1. Geometric modeling of parallax in 3-D scene.

the intensity value on overlay areas. [10] proposed a method
for detecting and tracing incoherent local motion in dynamic
scenes.

Conventional image registration uses planar projective trans-
formation, which is based on the assumption that the distance
of the scene from the camera is much greater than the camera
motion, such that the scene can be considered on a common
plane surface approximately. However, in real cases when
the distance of scene are comparable to the focal length, the
depths vary tremendously, or the distances between camera
centers are wide. The parallax effects caused by the three di-
mensional nature of the scene is no longer negligible. In this
paper we propose an approach which allows optimization of
global homography in each local region to compensate for the
parallax.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly outlines the geometric model of parallax grow-
ing as viewing angles increases. In section 3 the coarse-to-
fine image registration is described and section 4 presents the
experimental results.
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2. GEOMETRICAL MODELING

We consider a moving camera, taking images of a scene. The
images taken at time j is defined as Ij . The homography
between two consecutive images is a 3×3 homogeneous ma-
trix Hj

j+1 [11]. Let x
′ be a point in image Ij and x be the

corresponding point in image Ij+1, the spatial relationship
between these two points is x

′ = Hj
j+1x.

The error inherent from 3-D scene is illustrated in Figure
1. C1 and C2 are two camera centers in the same scene but
from varying angles, where C1 is the reference view. The
curve denotes the real surface of the scene. Plane π0 is the
common plane for the scene. C1 reprojects a 3D point X on
π1, onto the common surface plane π0, to form a hypothetic
3D point X ′. The error term e reflects the residual of viewing
X from C2:

e =
f

d
x

=
f

d

l sin α

sin(θ + α)

=
f

d

∆

sin θ
sin α

sin θ cos α + cos θ sin α

=
f∆

d( sin2 θ
tan α

+ cos θ sin θ)
(1)

Since C1 is the reference view, angle θ is constant when
camera center C2 varies. The depth difference ∆, focal length
f and scene depth d are fixed terms as well. The constraint
is that α is less than π/2, which is the usual case. According
to Equation (1), α ↑ ⇒ tan α ↑ ⇒ e ↑, which means
the parallax increases as the viewing angle with respect to the
reference view grows along the image sequence. And it is
easy to see from Equation (1) that parallax is proportional to
the range of depth difference, and the ratio between camera
focal length and the distance from the scene to the camera.

3. APPROACH

3.1. Global Registration

We use a modified version of Lowe’s SIFT descriptor [12]
to retrieve affine-invariant interest points. Local extrema in
DOG (Difference of Gaussian) filtered images are selected as
interest points. The scale σ at which DOG response has a
local extremum is selected as well. The Harris corner con-
dition is examined in both space and scale for each inter-
est point. Points with edge response are eliminated. Edge
response means the corner response function is less than a
threshold. We make cornerness threshold adaptive to the spa-
tial density of interest points in each region, where the re-
gions are the output of a parallel process of segmentation. If
the density of interest points in one region is above the global

Fig. 2. A sample fifth order neighbourhood around a bound-
ary pixel. Boundaries are assigned to one or more local re-
gions.

density of interest points, the threshold is increased to elimi-
nate more points and vice versa. The density of interest points
in region Ei at scale σ is defined as

D(Ei, σ) =
# interest points in Ei

# pixels in Ei

(2)

Two interest points are defined as a potentially correspond-
ing pair if the Mahalanobis distance between their local fea-
ture vectors is below a predetermined threshold [5].

dM (m,m′) =
√

(Vm − V′

m
)T Λ−1(Vm − V′

m
) (3)

where Vm and V
′

m
are local descriptors associated with point

m and m
′ respectively, and Λ is the covariance matrix formed

from Vm and V
′

m
. The Mahalanobis distance is the weighted

form of the Euclidean distance, as a consequence it is rotation-
invariant compared to the Euclidean distance in point match-
ing.

Clustering all point-to-point correspondences forms a set
of initial similarity transforms. The robust matching algo-
rithm, RANdom SAmple Consensus, is used to obtain the ini-
tial transforms. RANSAC has the advantage of insensitive to
outliers.

3.2. Segmentation in Scale Space

For the image segmentation, the image is segmented into ho-
mogeneous labeled regions in term of gray intensity using wa-
tershed segmentation algorithm. During the procedure of ro-
bust image matching, for a point pair (xm,xn), the scale pair,
(σj,m, σj+1,n), is recorded. σj,m is the scale of interest point
xm, and σj+1,n is the scale of interest point xn. K-means
clustering classifies the scale pairs, and the centroid of the
biggest cluster, say (σj , σj+1), is chosen as the global scale
pair between image Ij and image Ij+1. The image at scale
level σj+1 is selected from image pyramid L(j + 1, σj+1)
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for segmentation. The regions are compared and aligned to
L(j, σj) in local adjustment. Here L(j, σ) = G(j, σ) ∗ Ij .

Boundary pixels between regions are not assigned to any
region in segmentation. But they are also taken care of in our
experiments. The reason is that these pixels normally locate
in high activity areas. Misalignments of these pixels are more
visible than the pixels in flat areas. Therefore the local ad-
justment should include boundaries into consideration. The
boundary pixel is assigned to the region(s) according to its
fifth order neighborhood system:

{
x ∈ Ek

j,σ, ifNk > Nm,m �= k
x ∈ Ek

j,σ, Em
j,σ, ifNk = Nm,m �= k

(4)

where Nk is the number of pixel belonging to region k over
the 5× 5 neighouring window around x, where j is the index
of image sequence and Ek

j,σ is the region at L(j, σ) labeled
as k. Similarily Nm indicates the number of pixels labeled
as region m. As depicted in Figure 2 the boundary point in
the center of the window is assigned to both region labeled
as 3 and region 5. Therefore the regions may overlap over
boundaries.

3.3. Local Adjustment

In the local adjustment step the global homography Hj
j+1 is

applied to region Ek
j+1,σj+1

for evaluation. The reliability
of an initial homograhpy is indicated by its residual error,
e2
j+1,k, which is denoted as follows:

e2
j+1,k = 1

Nk

∑
x
[Lj,σj

(x′) − Lj+1,σj+1
(x)]2, (5)

where x
′ = Hj

j+1x, x ∈ Ek
j+1,σj+1

where Nk is the number of pixels in region Ek
j+1,σj+1

;
Lj+1,σj+1

(x) is the gray intensity at point x in image j +1 at
scale σj+1; x′ is the location of the counterpart of x in image
Lj,σj

. If the residual is greater than a pre-defined threshold
this region is considered incoherent with the global homog-
raphy. Usually the registration residual is the consequence of
inconsistent occlusions, parallax, or moving objects. The goal
of local alignment is to find a homography such that,

Hj

Ek
j+1,σj+1

= arg min e2
j+1,k. (6)

We use the Lervenberg-Marquardt method (LM) [13], which
is an approximate second order optimization method for solv-
ing the minimum of a nonlinear function. This method uses
the whole set of pixels in the overlapping area. It directly
minimizes the discrepancy in the intensities between region
pairs.

3.4. Iterative Refinement

After local adjustment for region Ei reaching an optimal point,
the local homography is applied to the overall image. If the

a b

c d

Fig. 3. a-b, two images with slight scale factor used for reg-
istration; c d, output of watershed segmentation. Regions of
diffrent scene depths are seperated.

global registration calculated by Equation (1) decreases, local
homography replaces the global model; if the error increases,
local homography is discarded and local adjustment for next
region is performed. The above steps iterate until all the re-
gions are processed. It is easy to see this is a linear regression
process.

4. EXPERIMENTAL RESULTS

Fig. 4. Example mosaic result taking Figure 3.a and Figure
3.b for input

The proposed algorithm is applied to two images as shown
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in Figure 3.a and Figure3.b. Note that Figure 3.b has a slight
scale factor compared to reference image 3.a. Image match-
ing between the two images are wide-baselined. The depths
of the scene, range from close parking roof, to trees and build-
ings, until infinity into the sky. Figure 3.c and Figure 3.d
shows the output of watershed segmentation. Regions with
different depths are separated, and compensated respectively
in local adjustment.

Figure 4 shows the mosaic result after global registration
followed by local adjustment in scale space. The frame size
is 640 × 480. The camera is uncalibrated nor providing any
prior information. Registration error without local adjustment
is 22.56, while Registration with local adjustment is 19.42.
Part of the error comes from different illumination conditions
in the input images.

5. CONCLUSIONS

Hierarchical image registration uses local information to re-
fine the initial global homography in each region. This ap-
proach is useful if the scene is not precisely planar, which is
the common case. The parallax is compensated to result in
a higher quality mosaic image. In local region adjustment,
since the regions are denser than sparse feature points the al-
gorithm is more robust to Gaussian distributed noise and oc-
clusions. In addition, feature points are usually selected from
gradient maxima, which means the regions with rich texture
contributes more to the global transformation. Our method
balances the spatial distribution of feature points across re-
gions, hence avoids ill-posed cases that those textured regions
do not agree with the true global model. The global model is
obtained first as the prior information for region adjustment.
Otherwise the local registration may be stuck at some local
optimal point.
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