
LOCATING 1-D BAR CODES IN DCT-DOMAIN

Alexander Tropf and Douglas Chai

Visual Information Processing Research Group
School of Engineering and Mathematics, Edith Cowan University

100 Joondalup Drive, Joondalup WA 6027, Perth, Australia

ABSTRACT
Today’s digital cameras and camera phones allow users to
capture bar codes, which are used to uniquely identify con-
sumer products. In this paper a fast algorithm is proposed
that locates a 1-D bar code in the DCT-domain of a bar code
image taken by a digital camera. The algorithm uses the
DCT-transform properties to distinguish bar code from other
texture, morphological operations to smooth the detected bar
code area and the features of the extracted area to detect po-
sition and orientation of a bar code in the image.

1. INTRODUCTION

In today’s modern society, almost every consumer product has
a unique 1-D bar code for identification. With the use of a
bar code laser scanner, information about a product such as
description and price can be easily accessed.

To enable consumer to obtain information about a con-
sumer product at home or in a supermarket, a scanning device
that can decode the product’s bar code, and a communication
device that retrieves the information from a consumer prod-
uct server, are required. Today’s camera phones can handle
both tasks: they can take a picture of the bar code and con-
nect to a consumer product server to obtain information about
the product.

The critical part of enabling a camera phone for bar code
reading is that it first has to locate the bar code in the image
and then it requires to decode the bar code. In this article we
shall concentrate on the first part: locating the bar code.

Bar code localisation in computer images is not new. There
exist numerous approaches for 1-D bar code location using
analysis in the spatial domain [1–5], Gabor filtering [6] and
analysis in the Wavelet domain [7]. However using the DCT-
domain for bar code location has not been investigated yet.

JPEG which uses DCT prior to data quantisation is one of
the most common compression standards for digital images.
Because of this fact, JPEG codecs are usually implemented
in a camera phone’s hardware [8, 9] which will provide fast
access to the DCT-domain of a bar code image.

This paper is organised as follows: Section 2 investigates
the properties of 1-D bar codes in the DCT-domain. Our al-
gorithm is presented in Section 3. Experimental results are

given in Section 4, while concluding remarks can be found in
Section 5.

2. PROPERTIES OF 1-D BAR CODES IN THE
DCT-DOMAIN

Basically, JPEG compression involves the following steps:

• DCT is performed on each 8×8 block of the image.

• The DCT coefficients are quantised.

• The quantised DCT coefficients are encoded with Huff-
man coding to generate the JPEG bit-stream.

The DCT transforms an 8×8 image block into 64 DCT coef-
ficients. The first DCT coefficient is the “DC-value” since it
gives the average value of the image block. The remaining co-
efficients are the “AC-values” that give the spatial frequencies
of an image block in ascending order.

A 1-D bar code can simply be described as an alternating
sequence of black and white stripes in one specific direction.
Consider two simple cases:

1. The bar code is aligned horizontally and the black and
white stripes alternate in x-direction.

2. The bar code is aligned vertically and the black and
white stripes alternate in y-direction.

Let us have a look at the DCT-coefficient in the bar code re-
gion of the first case. There should be AC-coefficients in x-
direction of high magnitude, whereas the coefficients that rep-
resent alternating y-components should be ideally zero, or at
least very small. In the second case there will be strong AC-
components in y-direction and no or only small components
in x-direction. Hence DCT-coefficients of bar code regions
not only can be distinguished from non-bar code regions, they
also give information about the orientation of the bar code. In
case the bar code is aligned under an arbitrary angle, the DCT-
coefficients of the bar code area will have AC-components in
both directions, where the centre weight of each frequency
component should give the approximate angle. For example
if the alignment angle is 45◦, the bar code AC-coefficients
will have an equal portion in x- and y-direction.

II ­ 7411­4244­0469­X/06/$20.00 ©2006 IEEE ICASSP 2006

0

group Gf , cfmax = max(Gf)

mean(DCT-blocks)

abs(DCT-coefficients)

DC-components morphological closing

sum(DCT-blocks)

conversion to binary

region properties

weight matrix W

region labeling

DCT-blocks

bar code region verification

Fig. 1. Flowchart of bar code location algorithm

...

...

Collection of DCT−blocks
Average DCT−block

c11

Fig. 2. Computing average DCT-block from all DCT-blocks

3. BAR CODE LOCATION ALGORITHM

Here, we propose a bar code location algorithm that works on
the DCT-coefficients on luminance of a bar code image. To
be able to locate bar code DCT-coefficients and to assist in
the decoding step, we set the constraint that a bar code should
cover an area of at least 10% of an image. The ideal outcome
is to detect all lines of the bar code, so that a simple algorithm
can be devised for decoding.

A flow chart of our proposed bar code location algorithm
is given in Figure 1. The steps of the algorithm are described
as follows:

1. Compute magnitude of DCT-coefficients. Only the mag-
nitude of the AC-values is of interest.

2. Set DC-components to 0. Only the AC-values are re-
quired to locate the bar code area.

3. Calculate an average DCT-block from all 8×8 blocks
of DCT-coefficients (see Figure 2).

4. Take the average DCT-block and group all DCT-coef-
ficients cij of one frequency range f together into an
array Gf , so that Gf = cij , (i = f)∧j = {1, . . . , f}∨
(j = f)∧(i = {1, . . . , f − 1}). For example G3 =
{c31, c32, c33, c13, c23} (see Figure 3). Then calculate
the largest DCT-coefficient cfmax = max(Gf), from

�

�

�

�

�

�

�

�

c11 c12

G2

G6

G7

G8

G1

G3

G4

G5

c13

c21

c31

c22

c32c33

c23

Fig. 3. Grouping of DCT-coefficients from each frequency
range

each frequency range f in the average block. The co-
efficients cfmax now indicate the coefficients in the bar
code area that are strongest.

5. Compute a weight matrix W of dimension 8×8, where
each element wi,j is defined as

wi,j =

{
ke, if cij = cfmax

−kd, else

where ke and kd are the emphasis and deemphasis fac-
tors, respectively. A relationship between ke and kd

will be determined in Section 4, but generally one has
to choose ke > kd to emphasise bar code coefficients
more than deemphasising other coefficients.

6. Perform an element multiplication of each 8×8 DCT
block with W . Then calculate the sum of each DCT-
block. The higher the sum of a DCT block, the higher is
the likelihood that it belongs to the bar code region. The
DCT-sums make up a subsampled DCT-image by factor
8 in each dimension, which will increase computation
time of subsequent steps. Negative values will be set to
0. Positive values will be scaled to the range [0,255], to
construct a gray-scale image.

7. Perform morphological closing on the gray-scale im-
age from Step 6. This will smooth the bar code area. In
most cases the bar code area now has the highest inten-
sity compared to surrounding regions.

8. Convert gray scale data into binary using the Otsu thres-
holding technique [10].

9. Label all 8-connected regions as it is described in [11].

10. At this stage we know that the bar code region has to be
large and of approximate rectangular shape. In a simple
case the bar code area is much larger than other areas.
Therefore the algorithm will choose the largest region
as bar code area and proceed with Step 11. In case
there are a few large regions that differ in size by factor
2 or less, the one with the highest “solidity” is taken.
The term solidity here refers to the proportion of pixel

II ­ 742

in the convex hull that are also in the region. If both
areas have a high solidity, the bar code detection will go
back to Stage 8 and set a high threshold for the binary
image conversion. Since the bar code area has a high
intensity after Step 7, it will be the first one to show up.
Therefore Step 10 chooses the largest area as bar code
region and checks the solidity. The algorithm will then
repeat Steps 8 to 10 until the result is satisfactory, or
abort if no bar code region can be distinguished after a
few iterations.

11. In the last stage the bar code region has to be verified to
be rectangular to a certain degree. The extrema points
[11] are used to check whether the area conforms to a
rectangular.

In the end we obtain a binary image mask, which identifies
the bar code region of the image.

4. RESULTS

We are using digital bar code images of size 1280×960 pixel
to test the algorithm. First of all the emphasis and deemphasis
factors have to be obtained. If the ratio ke/kd is too low, the
bar code area is not emphasised enough and parts of the bar
code can be missing. On the other hand, if the ratio is chosen
too high, texture is not deemphasised enough and will show
up as high intensity area. Experimental results have shown
that choosing ke/kd = 3, gives reasonable results.

Figure 4 shows the result of locating a horizontally aligned
bar code. Since the bar code area has only vertical edges, only
the DCT-coefficients that represent changes in x-direction will
be emphasised. Vertical edges that appear outside of the bar
code area are emphasised as well (see upper right corner in
Figure 4b). However they can be easily distinguished from
the bar code region in Step 10 of the algorithm. The example
also shows that texture is deemphasised and it appears only at
low intensity after the morphological operation (see left side
of Figure 4b). Note that the inclusion or exclusion of numbers
beneath the bar code does not have a significant impact of the
subsequent decoding process.

Figures 5 and 6 show the results of locating a diagonally
and vertically aligned bar code, respectively. It shows that our
algorithm is rotation invariant to a high degree.

The detection works even if the bar code has a high con-
tent of texture (see Figure 7).

In most cases the bar code was located correctly. However
if the percentage of texture in a bar code image is too high
compared to the bar code region, the algorithm fails.

5. CONCLUSION

We have shown in this paper that bar code location in the
DCT-domain produces good results. Furthermore, the pro-

(a) (b)

(c) (d)

Fig. 4. Result of locating a horizontally aligned bar code:
(a) original image; (b) result after morphological operation;
(c) binary image mask; (d) located bar code

(a) (b)

(c) (d)

Fig. 5. Result of locating an arbitrarily aligned bar code:
(a) original image; (b) result after morphological operation;
(c) binary image mask; (d) located bar code

II ­ 743

(a) (b)

(c) (d)

Fig. 6. Result of locating a vertically aligned bar code:
(a) original image; (b) result after morphological operation;
(c) binary image mask; (d) located bar code

(a) (b)

(c) (d)

Fig. 7. Result of locating a bar code in image with strong
surrounding texture: (a) original image; (b) result after mor-
phological operation; (c) binary image mask; (d) located bar
code

posed algorithm is relatively simple to implement and per-
forms very fast. To increase robustness of the algorithm, the
bar code region estimation and bar code region verification in
the last two steps of our algorithm should be improved. How-
ever the algorithm in its current state successfully detects a
high number of bar code areas on consumer goods.

The future work will involve an implementation of the bar
code location algorithm in JAVA on a camera phone and the
implementation of a suitable bar code decoding algorithm.

6. REFERENCES

[1] C. Viard-Gaudin, N. Normand, and D. Barba, “A bar
code location algorithm using a two-dimensional ap-
proach,” in Proc. IEEE ICDAR’93, Oct. 1993, pp. 45–
48.

[2] S.-J. Liu, H.-Y. Liao, L.-H. Chen, H.-R. Tyan, and J.-
W. Hsieh, “Camera-based bar code recognition system
using neural net,” in Proc. IEEE IJCNN’93, vol. 2,
Nagoya, Oct. 1993, pp. 1301–1305.

[3] R. Howlett, S. Berthier, and G. Awcock, “Determin-
ing the location of industrial bar-codes using neural net-
works,” in Proc. IEE IPA’97, vol. 2, July 1997, pp. 511–
515.

[4] S. Arnould, G. Awcock, and R. Thomas, “Remote bar-
code localisation using mathematical morphology,” in
Proc. IEE IPA’93, vol. 2, July 1999, pp. 642–646.

[5] D. Chai and F. Hock, “Locating and decoding EAN-13
barcodes from images captured by digital cameras,” in
Proc. IEEE ICICS’05, Dec. 2005, pp. 1556–1560.

[6] A. K. Jain and Y. Chen, “Bar code localization using
texture analysis,” in Proc. IEEE ICDAR’93, Oct. 1993,
pp. 41–44.

[7] R. Oktem, “Bar code localization in wavelet domain by
using binary morphology,” in Proc. IEEE SIU’04, Apr.
2004, pp. 499–501.

[8] Epson, “New Epson mobile graphics engine for
enhanced music playing on mobile phones,” June
2005. [Online]. Available: http://www.epson.co.jp/e/
newsroom/2005/news_2005_06_27.htm

[9] 3G, “New mobile media processors for mobile phones,”
Mar. 2004. [Online]. Available: http://www.3g.co.uk/
PR/March2004/6886.htm

[10] N. Otsu, “A threshold selection method from gray-level
histograms,” IEEE Trans. Syst., Man, Cybern., vol. 9,
no. 1, pp. 62–66, 1979.

[11] R. M. Haralick and L. G. Shapiro, Computer and Robot
Vision. Addison-Wesley, 1992, vol. 1.

II ­ 744

