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ABSTRACT

We propose to apply a marked point process to detect a galaxy
filament network. From the “Quality Candy” model, initially
developed for road network extraction in remotely sensed im-
ages, we adapt the data term to the filament detection. The
optimization is realized by a simulated annealing using a Re-
versible Jump Markov Chain Monte Carlo algorithm. Results
are presented on a numerical simulation and on an astronom-
ical survey.

1. INTRODUCTION

Beyond three hundred billion light-years, when averaged over
100 Mpc, the visible cosmos can be seen as a gas of galaxies,
uniformly distributed. At smaller spatial scales, astronomi-
cal observations as well as numerical simulations have shown
that the repartition of the luminous matter in the Universe is
not so homogeneous. Galaxies cluster within elongated large-
scale structures, called filaments, and leave huge voids be-
tween those filaments. These filaments, which might only
occupy 10% of the volume of the Universe, are organized in a
complex three dimensional network often described as lead-
ing to a sponge-like or cell-like 3D topology. As shown in
figure 1, such a filament is not a single structure with sharp
edges, but instead a fuzzy set of points more or less scattered,
which makes its detection difficult. Another difficulty in the
detection process comes from the difference of spatial scales
between sparse and prominent compact features. The gradual
disappearance of structures with increasing distance results
from the use of a magnitude-limited sample. The apparent
luminosity of any object is fainter as distance increases, and
only the few galaxies with the highest intrinsic luminosity are
then included.

Up to now, there are only a few methods to extract the
filamentary structure. The Minimal Spanning Tree (MST)
method, firstly formalized by [1] has been then mostly used
[2]. Recently, a method based on the “Candy” model [3]
showed interesting results for the filament detection from a
cosmological simulation [4]. In section 4.1, a comparison of

Fig. 1. Three dimensional view of galaxies up to 500 bil-
lion light-years, from the two CfA observation cones (credits:
Center for Astrophysics, Harvard).

our detection result with the MST and “Candy” detection re-
sults is presented.

As the “Candy” model has been successfully adapted to
extract cosmic filaments, we proposed to use the “Quality
Candy” model [5] for the same application. Both models are
based on a marked point process approach, whose efficacity
has been shown for road network extraction in remote sensing
[3, 5]. Marked point processes are shortly described in sec-
tion 2. The proposed detection model is presented in section
3 and tests on 2-D galaxy maps are then shown in section 4.

.
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2. MARKED POINT PROCESSES

The network of filaments is modeled by a marked point pro-
cess, that is to say a random set of objects whose number
of data points is also a random variable [6, 7] . The objects
of this process are segments described by three random vari-
ables corresponding to their midpoint, their length and their
orientation. The segment distribution is simulated by a den-
sity probability. For a uniform distribution, we use a Pois-
son process. In order to find the segment configuration x
that better fits the filamentary network, we define a density
probability f(x) which takes into account the interactions be-
tween segments. f is given by a Gibbs point process: f ∝
exp (−U). The configuration of segments composing the fil-
ament network is estimated by the minimum of the energy
U of the system. U has two components: the prior term UP

forces the segment configuration to be a network and the data
term UD helps this network to best fit the data. The estimate
of x̂ = arg min U(x) is obtained by means of a simulated
annealing algorithm. This algorithm iteratively samples the
law [f(x)]

1
T while slowly decreasing the temperature T . At

high temperature, a lot of configurations are explored. When
the temperature goes down to zero, the configuration of min-
imal energy is reached, assuming that a geometrical cooling
scheme Tk+1 = cTk with c ∈ [0.99, 1] is sufficient. The
probability density f is simulated through a reversible jump
Metropolis-Hastings dynamics sampling [8, 9, 10]. Basically,
this dynamics drives the system to the minimal state by means
of a set of segment perturbations: birth, death, translation, ro-
tation and dilation. From an initial configuration x0, the al-
gorithm is, at step t:

1. Compute the energy UTt of the configuration xt,

2. Propose a new configuration yt, obtained by a pertur-
bation of xt,

3. Evaluate the Green acceptance ratio R(Tt),

4. Move to yt with a probability equal min
(
1, R(Tt)

)
,

5. Decrease the temperature Tt.

We do not describe the computation of the Green ratio and
of the perturbation proposal, because the algorithm has been
presented in previous papers (see [11, 12])

3. THE GALAXY FILAMENT DETECTION MODEL

3.1. The prior energy

UP is the prior term of the energy. It takes into account the
geometrical constraints of the network: slow curvature and
good crossing points between the segments. As described in
[13, 14], the network structure is obtained by penalizing seg-
ments which are not connected. The curvature constraint is
optimized by quality functions with respect to the connection

angles and the orientation between the segments. The over-
laps between segments are forbidden in order to have neat
crossing points.

3.2. The data energy

As shown in picture 1, filaments of galaxies are locally over-
dense clouds of points elongated along a principal direction.
When the algorithm proposes a segment, it computes its data
energy term to decide whether it reasonably suits a filament or
not. UD is computed with respect to the circular neighbour-
hood depicted in figure 2. Three parameters are then defined:
ρ = n/r2 as a density term, c = |y|/r as a centering term
and a =

∑
d2(y, s)/d2(x, s) as an elongating term, where

n is the number of galaxies is the neighbourhood, r is the
length of segment S, d is the Euclidian distance and x, y are
respectively the longitudinal and latitudinal coordinates from
the center of S. The energy of segment S is then given by:

UD(S) = −ω1g1(ρ) − ω2g2(c) − ω3g3(a)

where the ωi are weighting constants and the gi are quality
functions. These quality functions are simple thresholding
functions, whose threshold values have been experimentally
determined.

S

x

y

Fig. 2. Segment fitting to the local data distribution. Black
points represent galaxies.

4. RESULTS

The “Quality Candy” model has been developed for 2D data
(remotely sensed images). In order to reduce the computing
time, its adaptation to the detection of cosmic filaments has
also been performed for 2D astronomical catalogues.

4.1. Detection from a numerical simulation

We first tested our method on the numerical simulation kindly
provided by the authors of [4]. As shown in figures 3, 4
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and 5, both “Candy” and “Quality Candy” algorithms enable
large improvement with respect to the MST method which
basically simply connects all points of the map. The net-
work extracted by the “Quality Candy” model, though par-
tially incomplete, presents an overall structure in adequation
with the description of the cosmic filaments made in section
1, that is to say, a network of filaments of varying sizes sur-
rounding huge voids. The network extracted by the “Candy”
model highlights more filaments, but some of them seem to
be overdetected.

Fig. 3. Network extracted by the “Quality Candy” model
(CPU time: 20mn).

Fig. 4. Network extracted by the “Candy” model [4].

Fig. 5. Network extracted by the MST model [4].

4.2. Detection from an astronomical survey

The CfA redshift catalogue contains the coordinates of 18,000
galaxies covering a part of the Universe. From this catalogue
a thin slice of the universe of about 1000 galaxies was ex-
tracted, with a right ascension between 8 and 17 hours, a dec-
lination between 26.5 and 32.5 degrees and a recession ve-
locity lower than 15000 km.s−1. The spatial distribution of
this subset of galaxies is plotted in Figure 6. The result of
the extraction with the “Quality Candy” model shows a very
interesting filament network. One can recognize the famous
“Great Wall” filament crossing the whole catalogue as well as
the circular filaments surrounding void regions.

Fig. 6. Extracted filament network from a galaxy map of the
CfA catalogue.
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5. CONCLUSION AND FUTURE PROSPECTS

As shown in this paper, the “Quality Candy” model gives
promising results for detecting a robust network of filaments
in the spatial distribution of galaxies. It is the first time such a
method is used to process an observational astronomical sur-
vey. Beyond the final tuning of the algorithm required for
ending up with a fully satisfactory result from the astronomi-
cal point of view, a future step is to adapt our model to three
dimensional data. Though theoretically possible, as both the
prior and data terms of the energy are extendable to one more
dimension, it requires to re-write the whole implementation
of the algorithm. Eventually, it would also be interesting to
achieve the estimation of the model parameters in order to
make the detection fully automatic.
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