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ABSTRACT

Correlation is widely used as an effective similarity measure 

in matching tasks. However, traditional correlation based 

matching methods are limited to the short baseline case. In 

this paper we propose a new correlation based method for 

matching two images with large camera motion. Our 

method is based on the rotation and scale invariant 

normalized cross-correlation. Both the size and the 

orientation of the correlation windows are determined 

according to the characteristic scale and the dominant 

direction of the interest points. Experimental results on real 

images demonstrate that the new method is effective for 

matching image pairs with significant rotation and scale 

changes as well as other common imaging conditions.

1. INTRODUCTION 

Image matching plays an important role in many applica-

tions. A lot of matching algorithms have been proposed in 

the literature [1,2]. Matching two uncalibrated images with 

large camera motion such as significant rotation and scale 

changes still remains a difficult problem. One effective 

strategy is using feature matching approach, which extracts 

salient features such as corners in the two images and then 

establishes reliable feature correspondences [3,4]. 

Normalized cross-correlation has found application in a 

broad range of computer vision tasks such as stereo vision, 

motion tracking, image mosaicing, etc. Normalized cross-

correlation is the simplest but effective method as a 

similarity measure, which is invariant to linear brightness 

and contrast variations. Its easy hardware implementation 

makes it useful for real-time applications.  

There have been some image matching methods based 

on normalized cross-correlation [5,6,7]. However, these 

methods cannot perform well when there are significant 

rotation and scale changes between the two images. This is 

due to the limitation that normalized cross-correlation is 

sensitive to rotation and scale changes. Therefore, 

traditional correlation based matching methods are not 

robust against rotation and scale changes. There are also 

generalized versions of cross-correlation, which calculate 

the cross-correlation for each assumed geometric 

transformation of the correlation windows [8,9]. Although 

they are able to handle more complicated imaging 

conditions, the computational load grows very fast in the 

mean time. 

This paper presents a new image matching method 

based on normalized cross-correlation, which can efficiently 

handle image pairs with significant rotation and scale 

changes. First, interest points are detected in the two images 

separately. Each interest point is assigned one characteristic 

scale and one dominant direction. Then the new method 

uses rotation and scale invariant normalized cross-

correlation as the similarity measures between two interest 

points to establish the interest point matches. In order to be 

invariant to rotation and scale changes, both the size and the 

orientation of the correlation windows are determined 

according to the characteristic scale and dominant direction 

of the interest points. Finally, the epipolar geometry 

constraint is imposed to reject the false matches. Experi-

mental results demonstrate that the new method performs 

well on real images with different imaging conditions such 

as large angle rotation and significant scale changes. 

The remainder of the paper is organized as follows. 

Section 2 describes extracting interest points with 

characteristic scale and dominant direction. Section 3 

introduces the matching algorithm based on rotation and 

scale invariant normalized cross-correlation and presents in 

detail the calculation of similarity measures between two 

interest points. Section 4 describes rejecting the false 

matches by imposing epipolar geometry constraint. Section 

5 presents some experimental results on real images and 

Section 6 concludes the paper.

2. INTEREST POINTS DETECTION 

The interest point detector used in our method is Harris-

laplacian detector [10]. The results of Harris-laplacian 

detector have high repeatability under different imaging 

conditions such as translation, rotation, scale changes and 

moderate viewpoint changes [11]. The detector is based on 
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scale normalized auto-correlation matrix, which is built as 

follows:
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where g( I) is a Gaussian window function at the scale I.

Ix(X, D) and Iy(X, D) are the x and y directional derivatives

at the point X = (x, y) of the image I, which are computed

with Gaussian kernels of scale D. The corner response 

function of a point X is defined as:

2det( ) trace ( )HarrisC M k , (2)

where k is a constant. A point is selected as a corner if its 

corner response function is the local maximum in the 8-

neighborhood of it and a threshold Ct is given to ensure the

salience of the corner [12].

The corners are detected over a set of scales n = sn
0 ,

where 0 is the initial scale factor and s is the scale factor 

between sequential scale levels.  In our implementation, 17

scale levels are used to build the scale space representation. 

The factors 0 and s are set to 1.0 and 1.2, respectively. The 

auto-correlation matrix is calculated with I = n  and D = 

0.7 n. The threshold Ct is set to 2000 and k is set to 0.04. All

the corner points detected in different scale levels form the

initial set of interest points.

2.1. Characteristic scale selection

The characteristic scale of an interest point is selected by

finding the local extremum of the Laplacian scale selection 

operator over scales. n is the characteristic scale of an

interest point X if 

1( , ) ( , ) ( , ) ( , )n n n nF X F X F X F X ,

( , )n tF X S ,

(3)

where F(X, n) = n
2 |Ixx(X, n) + Iyy(X, n)| and St is a 

threshold, which is set to 20 in our implementation. For two

interest points that correspond to the same scene point, the

ratio of their characteristic scales is equal to the scale factors 

between the two images. The characteristic scale of the 

interest point will be used to determine the size of the

correlation window in our method. Note that if an interest

point in the initial set has more than one characteristic scale, 

it will be treated as multiple interest points that each of them

has one characteristic scale. And interest points with no 

characteristic scale will be eliminated from the initial set of

interest points.

2.2. Dominant direction assignment 

In order to achieve invariance to rotation, each interest point 

is assigned one dominant direction. The histogram based 

approach for dominant direction assignment [13] is adopted.

An orientation histogram with 36 bins covering the range of

360 degrees is used to accumulate the local gradient 

orientations within a region around an interest point. The 

gradient orientation of each sample in the region is weighted 

by its gradient magnitude and by a Gaussian window.

After building the orientation histogram, we perform a 

smoothing operation on the histogram by iterative local

averaging of every 3 consecutive bins in a cyclical fashion.

The orientation corresponding to the largest bin in the

smoothed histogram is selected to be the dominant direction

of the interest point.

3. MATCHING BY NORMALIZED CROSS-

CORRELATION

Matching interest points in two uncalibrated images is a

fundamental problem in computer vision. Normalized cross-

correlation is widely used in many applications that require

matching parts of the images. Traditional matching methods

based on normalized cross-correlation can only handle the

situation where there are only translation or small rotation

and scale changes between the two images. We introduce a 

new image matching method based on rotation and scale

invariant normalized cross-correlation, which can handle

more complicated imaging conditions such as large angle

rotation and significant scale changes.

In our new method, rotation and scale invariant

normalized cross-correlation is used as similarity measure to 

estimate the difference between the interest points. In

contrast to traditional normalized cross-correlation, both the

size and the orientation of the correlation windows are 

determined according to the characteristic scale and 

dominant direction of the interest points. The matching

algorithm is presented in detail as follows:

Let m1=I1(xi, yi) be an interest point with characteristic

scale 1 and dominant orientation 1 in one image and 

m2=I2(xj, yj) be an interest point with characteristic scale 2

and dominant orientation 2 in the other image. Without loss

of generality, we can assume 1 2. W1 and W2 are two 

correlation windows of size  (2w+1) (2w+1) centered on 

each interest point with w= 2, where  is a constant. Let

= 2 1 be the rotation angle and r= 1/ 2 be the scale 

change factor. W1 is rotated by | | around m1 (the direction

of rotation is counterclockwise if 0, and otherwise is

clockwise). W1 and W2 can then be represented as two

arrays of pixel intensities A and B:

1( cos sin , cos sin )uv i iA I x ru rv y rv ru ,

),(2 vyuxIB jjuv ,
(4)

where u, v [-w, w]. Auv is calculated using bilinear inter-

polation. Image I1 should be smoothed by a Gaussian

window function of scale s before calculating Auv when r is 

large, for example r>2. The similarity measure between the
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two interest points is then defined as the normalized cross-

correlation between A and B.

1 2,
(2 1)(2 1) ( ) ( )
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w w A B

, (5)

where )( BA is the average and ))(()( BA  is the

standard deviation of all the elements in A (B). We use =5

and s=1.5 in our experiments.

By adapting the size and the orientation of the

correlation window, the similarity measure is robust against

rotation and scale changes. The similarity measure

decreases monotonically from 1 to -1 with the increase of

difference between two interest points. Suppose there are m

interest points in the first image and n interest points in the

second image, consider a matrix G Mm,n that its element Gij

stands for the similarity measure between the i-th interest

point in the first image and the j-th interest point in the

second image. In order to establish one to one interest point

correspondence, two interest points will be accepted as a 

match only if their similarity measure Gij is both the greatest

element in its row and the greatest element in its column.

With selecting all such elements in G, the initial set of

interest point matches between the two images can be

established.

The new method yields good results in the experiments

on real images under different imaging conditions such as 

large angle rotation and significant scale changes. Some of 

the results are demonstrated in Section 5. 

4. FALSE MATCHES REJECTION 

The initial set of interest point matches usually contains

some false matches due to the inaccurate characterization of 

interest point or the improper matches established in the

matching procedure. In the case of matching two

uncalibrated images, the epipolar geometry can be used to

reject the false matches [6,14,15]. The estimation of

epipolar geometry from interest point correspondences is

performed by the robust estimator RANSAC [16]. Then the

interest point matches that are not consistent with the

estimated epipolar geometry are identified as false matches

and rejected. 

5. EXPERIMENTAL RESULTS

In this section, we will demonstrate some experimental

results on real images of various content. These images are 

under different imaging conditions, such as rotation, scale

changes, viewpoint changes, etc. Some of the images are 

from the public domain resources of INRIA and others are 

collected by our lab. Fig.1-Fig.4 show the final matching

results for four different image pairs with significant camera

motions.

Figure 1: Matching result for image pair East_south (from INRIA) 

with rotation and scale changes.

Figure 2: Matching result for image pair Residence (from INRIA) 

with rotation and scale changes.

Figure 3: Matching result for image pair Graffiti6 (from INRIA) 

with viewpoint changes. 

Figure 4: Matching result for image pair Car (from our lab) with 

translation, rotation and scale changes.

Fig. 1 and Fig. 2 show the matching results for image

pair East_south and Residence with large rotation and

scale changes. There also exist self-similarity structures in

the two images of image pair Residence. Fig. 3 shows the

matching results for image pair Graffiti6 with viewpoint

changes. And Fig. 4 shows the matching results for image

pair Car with translation, rotation and scale changes. The 

numbers of correct matches and the average distances from

epipolar lines are illustrated in Table 1.
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Table 1: Final matching results for Fig.1-Fig.4 

Image Pair 
Correct

Matches

Average

Distance

East_south 49 0.235

Residence 83 0.246

Graffiti6 76 0.341

Car 79 0.294

The experimental results on real images of various

content show that our new method is effective for matching

image pairs with significant rotation and scale changes, 

which cannot be effectively handled by traditional 

correlation based matching methods. Moreover, the new 

method can handle the situation where there are moderate

viewpoint changes between the two images. We also test 

our method under other common imaging conditions. Fig. 5 

demonstrates more matching results with the new method.

6. CONCLUSIONS 

We have presented a new correlation based method for 

matching two uncalibrated images with significant rotation

and scale changes. Our method employs rotation and scale

invariant normalized cross-correlation defined as the

similarity measure between two interest points. The

calculation of normalized cross-correlation adapts the size 

and the orientation of the correlation window according to 

the characteristic scale and the dominant direction of the

interest points. Compared with traditional matching methods

based on correlation, our method is able to handle more

complicated imaging conditions such as large rotation and 

scale changes. Experimental results on real images of

various content verify the effectiveness of our method.
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(a)                      (b)                     (c)                       (d) 

Figure 5: Matching results for different imaging conditions. (a) 

shows 60 inliers for illumination case. (b) shows 49 inliers for 

blurring case. (c) shows 94 inliers for JPEG compression case. (d) 

shows 62 inliers for large angle rotation, scale changes plus

random noise case.
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