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ABSTRACT

In this paper, a robust approach to contour line extraction in clut-
tered images using context is presented. Object contours are often
used as key features in model-based 2D and 3D tracking systems.
In many applications, object contours can be approximated using
line segments, e.g. in human limb tracking. In cluttered images,
undesired edges other than the true contour lines often present se-
vere disturbance for reliable object tracking. In our approach, we
reduce the effect of unwanted edges by exploring context informa-
tion, including edge orientation and previous contour line position
and orientation. Experimental results have shown that by using con-
text, the number of false contour lines can be reduced significantly,
which will greatly improve the tracking performance.

1. INTRODUCTION

Object contours are important image features for tracking. It has at-
tracted tremendous attention in the computer vision literature (see
[1]). The tracking framework deployed in many tracking systems
which use contours can be roughly summarized into two steps: first
a prediction of contour is obtained from the previous estimate and
the template (either 2D or 3D) using the knowledge of dynamic
models; then according to the predicted contour, local optimization
techniques are used to fit the prediction to the measurement in the
feature map which is obtained from feature detection filters such
as edge/ridge/valley filters. Usually, during the optimization pro-
cedure, the displacement between the predicted positions of contour
and the features in the feature map along norm direction of the pre-
dicted contour are used to evaluate the distance between the pre-
dicted contour and the one found in the feature map. The above
contour tracking framework can work reasonably well with a rela-
tively clear background, but suffers from image clutters. Although
techniques such as background subtraction can be used to reduce the
clutters in the background, foreground clutters sometimes are not
simply avoidable, e.g. textures on clothes during human body track-
ing. In this paper, we argue that an intermediate-processing step
is needed between the above two steps to further reduce the noise
caused by image clutters in contour-based tracking.

In this intermediate-processing step, good candidates of the tar-
get contours are extracted from the feature map, such as edge maps,
by context information. Instead of using feature maps directly, pre-
selected contour candidates from the intermediate step can be used
to guide the contour-based tracking as intermediate measurements
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from images. To summarize, in this intermediate step, we would
like to solve the following problem: given a set of predicted con-
tours from either the projections of 3D models or deformed 2D tem-
plates, how to extract a set of candidate contours from the feature
(e.g. edge) maps using prior knowlege and previous tracking results.

In this paper, we will focus on the robust extraction of lines can-
didates using context information such as line orientation and the
knowledge about kinds of interesting lines, i.e. information con-
tained in the predictions. There are mainly two reasons that the ro-
bust extraction of lines is studied here. First, lines are one of the
simplest 2D point sets. Moreover, cones and cylinders are widely
used in the modeling of human fingers, limbs and torso. Their image
projections are line segments. One of the applications of the robust
line candidates extraction is 3D tracking of human arm, where the
arm is modeled by two cones. Figure 1 shows the modeling of up-
per arm. Once good candidates of the desired lines can be extracted
from the input image, they can be used to confine the search space
of the 3D arm movement. This will naturally lead to improvement
both in accuracy and processing speed.

3D Arm Model

Image Plane Model-based Search Lines

Arm Model Contour

Arm Image Contour

Fig. 1. 3D model-based arm tracking

2. PREPROCESSING OF INPUT FRAMES

In this paper, we assume that the tracking is performed using a static
camera with smooth object movement between adjacent image frames.
To use this prior knowlege, a preprocessing step is applied to the in-
put frame to locate the region of interest (ROI) and to remove image
clutters in the background through ROI extraction and background
subtraction.

Assume that the estimation of object contour X in previous frame
is correct. Based on the smooth object movement assumption, the
object contour in current frame usually is very close to its location
in the previous frame. To find the ROI within the current frame, the
bounding box of X is firstly located, and then the ROI is obtained
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by extending length and width of the bounding box by half, while
keeping the center unchanged.

Within the ROI, background subtraction is used to extract the
foreground object and remove some of the background clutters. Sim-
ilar to the methods in [2], we used 30 color images as training data to
obtain a background image for the fixed camera. The mean µ(x, y)
and standard derivation δ(x, y) of each HSV color channel are cal-
culated at all the pixel locations. The color distribution of each pixel
is modeled as a Gaussian. The intensity change of a pixel at loca-
tion (x, y) in one of the channel in a frame is calculated using the
correpsonding mean and variance by

c(x, y) =
|p(x, y)− µ(x, y)|

δ(x, y)
(1)

where p(x, y) is the pixel value in the corresponding channel.
Foreground image f(x, y) is then obtained by thresholding the

background-subtracted image. The Canny edge detector is then adopted
to obtain the foreground object edges. At the same time, the direc-
tions of the edge points are also obtained. Figure 2 shows the frame
preprocessing results. Some extra lines were added manually inside
the arm area to create more clutters.

(a)

(c)

(b)

(d)

Fig. 2. Image preprocessing results. (a): the background image; (b):
an input frame; (c): foreground object within ROI after background
subtraction; (d): Canny edge detection results. The dotted straight
lines are previous estimated contour lines

3. LINE EXTRACTION

3.1. Line Detected using Hough Transform with Edge Orienta-
tion Constraint

Hough transform(HT) is one of most successful methods used for
line finding [3],[4]. HT usually uses the normal representation of a
line ρ = x cos θ + y sin θ to map an edge point to a sinusoid curve
in the quantized parameter space. The bins along the sinusoid are
increased. When the accumulation process is completed, the param-
eter space is searched for peaks. These peaks indicate the presence
of straight line segments in the image, with the peak position as es-
timates of line parameters.

In the standard Hough transform, the whole range of [0, 180] is
taken as possible values for the line slope angle θ. In our method, we
take into account of the edge direction information obtained during
the edge detection step. Given an edge point e(x, y) with direction

φe, during the Hough transform, it will only contribute to part of
the sinusoidal curve for θ ∈ [θa, θb], where θa = max(φe − η, 0),
θb = min(φe + η, 180). η controls the range of the angle and was
prechosen. Line segments candidates can then be obtained using
peak detection. By using the HT with edge orientation constraint,
false edge lines that don’t have enough points with consistent edge
orientations will be removed. Hence the computational resources
will be saved, which is extremely important in real time application.
Figure 3 shows line detection results using the standard HT and the
HT with edge orientation constraint. The thresholds of peak detec-
tion for both methods are αVmax, where α = 0.2 and Vmax is the
maximum value of edge point accumulator. Here we use ρ = 1
pixel and θ = 1 degree as the units of the quantities in the transform
domain. Using edge point orientation constraint, a much smaller
number of candidate lines will be generated.

(a) (b)
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Fig. 3. Line detection using Hough transform. (a): standard Hough
Transform; (b): Hough Transform with edge orientation constraints

3.2. Line Segments Reduction Using Contour Lines from Previ-
ous Frame

Most of the detected line segments using constrained HT correspond
to true edges. By using the movement smoothness assumption, line
segments that are far away from contour lines extracted from the
previous frame will be removed. Let li(ρ, θ) be the ith line segment
detected using the constrained HT. Let Xj(ρ, θ) j = 1, 2, · · · J be
the set of contour lines from the previous frame. The minimum dis-
tance D(ρ, θ) from li(ρ, θ) to the previous contour line set is com-
puted as follows,

D(ρ, θ) = min
j∈1,···J

||li(ρ, θ)− Xj(ρ, θ)|| (2)

If D(ρ, θ) is smaller that a prechosen threshold, λρ,θ , this line seg-
ment li(ρ, θ) will be reserved. This step will again reduce a large
number of redundant lines. For example, Fig 4 (b) shows the re-
moved line segments in the HT domain (data points represented by
’o’) through this line segment reduction step.

3.3. Line Segments Clustering Using the k-means algorithm

Because arm contours are not normally straight lines, small pieces
of line segments need to be clustered to get those main lines of the
contour. The k-means algorithm is implemented [5] to cluster the
remaining line segments in the HT parameter space. In our experi-
ments, the number of clusters K was set to 20 − 25. Because pre-
vious estimated values usually give useful information, part of the
cluster centers are initialized by taking the parameter values of the
contour lines in the previous frame. Each cluster center is calculated
as the mean of its (ρ, θ) vectors, weighted by the number of votes.
The Euclidean geometric distance (ρ2 + θ2) is used in the k-means.

To improve the clustering results, the characteristics of within-
cluster and between-cluster are considered. The within-class and
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between-class scatter Sw and Sb are computed from the k-means
results. The mean of entire data is µt. Each cluster has mean µj

and covariance cj . Sw =
∑

j cj , Sb =
∑

j(µj − µt)(µj − µt)T .
A sequence of output clusterings (Here we choose 10)is produced
and the best one with maximum value of det(Sb)

det(Sw)
is chosen. After

clustering, the main straight lines are generated, as seen in Figure 4.
The representation of cluster is the data in one cluster with distance
closest to the cluster centroid.
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Fig. 4. Line segments clustering results. (a) and (b): the detected
lines before clustering in the image and Hough transform domain,
respectively. In (b), ◦ means discarded lines through the line seg-
ments reduction step using previous contour lines, ∗ means previous
contour line HT parameters values and + are those remaining line
segments; (c) and (d): lines clusters in the image and Hough trans-
form domain, respectively. In (d), + are the input data points to the
k-means algorithm and, ∗ are the cluster centers

3.4. Cluster Center Reduction Through Edge Point Assignment

After clustering, edge point are assigned to the cluster centers. For an
edge point p at location (x, y) and a cluster center lk(k = 1, 2, · · · , K),
d(p, lk), the distance from the point location to this line, and θ(p, lk),
and absolute direction difference between this point’s edge direc-
tion and line direction are computed. Then an assignment function
f(p, k) is computed as follows:

f(p, k) = min
k=1,2,··· ,K

(d̂(p, lk)
2 + θ̂(p, lk)

2) (3)

where d̂(p, lk) =
d(p,lk)

D
and θ̂(p, lk) =

θ(p,lk)
180 . D is pixel length

of the image diagonal. D and 180 are used to normalize location and
angle distances from the edge point to the line cluster center.

If f(p, k) is less than threshold ε1 (e.g. 0.1), edge pixdl p will
be assigned to one of the line cluster centers that has the minimum
value. After all the edge points have been assigned, the number of
edge points that each line cluster centers possesses will be counted
and normalized by the total number of edge pointed successfully
assigned. This normalized edge point counter will be then used as
the weights of the line cluster centers. Those line cluster centers with
weights less than the threshold ε2 (e.g. 0.01) will be discarded.

After this step, the remaining line cluster centers will be con-
sidered as good line segment candidates. The edge points will reas-
signed to these candidates again according to equation (3), to reallo-

cate those edge points that were assigned to the line cluster centers
discarded during the previous step.

4. CONTOUR LINE REFINEMENT
In this section, we discuss the approach we used to match the line
candidates to the contour lines extracted from the previous frame.

4.1. Matching Line Candidates to Contour Lines from the Pre-
vious Frame

The Chamfer distance function was firstly proposed by Barrow et
al. [6] and improved versions have been used for object recognition
and contour alignment. In our approach, Chamfer distance is used
to compute the distance between the candidate lines and previous
estimated contour lines. The cost function in Chamfer distance is
the average value of the squared distances between each point in
one line and its closest point in another line. The A and B directed
chamfer distance C(A, B) is defined as

C(A, B) =
1

Na

∑

a∈A

minb∈B ||a − b|| (4)

where Na is the point number in A, a and b are points from A and B,
||a−b|| denotes the Euclidean distance between two points locations
a and b. In our framework, A is a set of points assigned the candidate
line in the edge map and B is a predicted line, which needs to be
matched.

Given a contour line B, the fitting of a candidate line A to B is
defined as following:

D(A, B) < λd (5)

M(A, B) = αC(A, B) + βL(A) (6)

where D(A, B) is the angle difference of the A and B, C(A, B) is
the Chamfer distance between A and B, L(A) is the pixel number
of A, α and β are coefficients. In our experiments, λ = 20, α = 0.8
and β = −0.2. The matching of A and B is that given B, a set
of As need to be found such that equation (5) is satisfied and the
values of M(A, B) are small. These As will be ranked based on the
corresponding values M(A, B). Some of the line candidates can be
removed by only keeping top M candidates for each contour line B.

4.2. Edge Point Assignment

(a) (b)

Fig. 5. Contour line matching results. (a): Four extracted lines and
(b): edge points assigned to these four lines

After the line candidates have been matched to the contour lines
from the previous frame, the edge points will be assigned to the clos-
est one among them. Because the extracted lines are very close to
the actual contours, the edge points will be assigned to one of lines
with minimum location distance d̂(p, l), if it is less than a thresh-
old εa. If the corresponding angle difference θ̂(p, l) is less than a
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threshold εb, this edge point will be assigned this line. Otherwise
this edge point will be discarded without being assigned to any of
the extracted lines. In our experiments, the values of εa and εb are
chosen as 0.03 and 0.167, respectively. Fig. 5 shows four extracted
lines (a) and edge points assigned to these lines (b).

5. EXPERIMENTAL RESULTS

One example has been presented in the previous sections and another
example is given in Figure 6. Some artificial lines were added man-
ually around arm edges and within the arm to create more cluttered
environment. So there are more edges in Figure 6 (b). Figures 6
(g),(h) and (i) are the top three matches for each contour line, which
satisfy equation (5) and ranked with ascending values of M(A, B)
computed using equation (6). The line subtraction from equation
(2) will reduce the interference, as seen in (c) and (d). From the re-
sults, our approach can find the contour line from the line segment
effectively and robustly.

6. CONCLUSION

In this paper, we proposed a robust contour line extraction method
using context. As one application of human body tracking, our
method is used to extract the arm contour lines from video sequence
in a 3D arm tracking system. In order to speed the computation and
remove edge noises, the edge orientation is used in Hough transform.
Previous estimated object contours are used to extract the desired
line candidates. The experiment results show that the robustness and
efficacy of our approach. 1
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Fig. 6. Example of Contour Line Detection. (a): ROI; (b): detected
edges;(c): Detected lines using Hough transform with edge orienta-
tion constraints;(d): Line segment reduction using contour previous
from the previous frame ; (e): k-means clustering; (f): Good line
candidates as refined cluster centers via edge point assignment; (g),
(h) and (i): Top three (the first, second and third) best matched lines
using Chamfer distances, respectively; (j): Edge points assigned to
the best matched line candidates
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