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ABSTRACT

In this paper, a new edge detector (boundary extractor) is 
proposed based on finding major change points in a local 
one-dimensional window of the image intensity values of 
the rows or columns. The approach amounts to separating 
the pixels in the window into sets or regions of constant 
intensities with the edge pixels providing transition points. 
The edge points are found based on partitioning the interval 
in an optimal way using dynamic programming with an 
appropriate cost function. Different cost functions are 
introduced for the algorithm with simulation results that 
show the detector’s effectiveness even in the presence of 
noise. 

1.  INTRODUCTION

An edge is usually defined as an abrupt transition of 
intensity or gray levels across a group of relatively uniform 
pixels [1-4]. Despite their presence in small percentages in 
any image, and as suggested by biological and 
physiological evidence, edges are high in their information 
content and therefore are of fundamental importance in 
image analysis, computer vision and pattern recognition. 
This is usually attributed to the edges primary role in 
perception and recognition and to their ability to reduce the 
total amount of data present in an image without losing the 
main features or structures needed for perception and 
recognition operations.  

The literature describes many edge detection techniques [1-
4]. These techniques have a wide range of approaches 
ranging from gradient-based high-pass filtering techniques 
to optimization techniques based on a specific model, curve 
or surface fitting, neural network based, genetic 
programming based, statistical and error minimization or 
reduction. Most of these techniques follow a two-step 
process of image smoothing followed by a detection or 
thresholding operation. The smoothing step is used to 
reduce the noise and blur the edges while the second step is 
used to find the edge map based on the strength of the edge. 

In this paper we propose a new approach to edge detection. 
Our algorithm is a one step algorithm that starts by dividing 
the image into rows and columns and then processes each 
separately; we will use the image rows as inputs for the rest 
of the paper with the understanding that the same steps are 
applied to columns as well. Each row is passed to the 
dynamic optimal portioning algorithm which finds the edge 
points, one-dimensional edge map, as the change points of 
that row. The change points are found based on either a 
Gaussian-based or Poisson-based cost function which 
reflects our posterior knowledge that pixels within two 
successive change points have a constant value and 
therefore considered non-edge pixels. In addition to the 
cost function, a prior value is used to find the edge at 
different scales. A segmentation scheme is also introduced 
to reduce the computational complexity of the algorithm for 
each row. Our approach is similar to Mumford and Shah’s 
variational model [8]  in that edges are found by optimizing 
a cost function; our approach, however, relies on dynamic 
programming for its optimization. 

2. EDGE DETECTION MODEL

2.1 Optimal Partitioning on an Interval 

Figure 1. Example of an Optimal Partitioning of an interval 

We pose the problem of finding a set edge pixels within an 
image row (or column) as a problem of optimal partitioning 
of that row, denoted here as R, into a set of M uniform
regions  
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function.  The number M is different for each row and is 
not defined a head of time. The optimal partitioning 
algorithm should find this number based on the cost 
function. A partition here is defined as a set of one or more 
contiguous pixels (block) from the row have approximately 
constant gray level value. Figure 1 shows details of this 
partitioning process. The final edge pixels map is simply 
the set of M-1 change points produced by the optimal 
partitioning.  A cost function, C(R

  i ji jR R for

i), is associated with the 
ith region or partition with the overall cost over the row R
denoted as C(R) being the sum of the costs of the partitions. 
This can be expressed as follows:
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Jackson, Scargle and others [5], have recently developed a 
dynamic programming technique [7], that solves this 
problem in O (L2) where L is the length of the signal 
(image row or column) to be partitioned. Associated with 
each partition is a cost function. The algorithm searches the 
exponentially large space of partitions of L data points in 
time O (L2). The cost function required by the algorithm 
must be additive with the cost of the total signal being the 
sum of the costs of its subintervals or partitions. The 
algorithm is guaranteed to find the exact global optimum, 
automatically determines the model order (the number of 
thresholds) and has a convenient real-time mode. The 
algorithm is discussed in detail in the reference and we only 
give a summary of it within the context of our edge 
detection model: 

Step 0: Decide prior, Ncp_Prior, and cost function C 
Step 1: Set optimal (-1) =0; set n=0 
Step 2:  Given optimal (j) for j=0, 1, …, n 

Compute optimal (n+1) as given in [5], for 
j=0, 1,…, n+1 
Keep track of j, where maximum occurred as 
lastChange(n+1)
Set n = n+1 
If n=L Stop 

Step 3: Extract the set of M-1 edge locations as: 

2

3 2

1

0 1

( 1)
( 1

( 1)
...

( )

M

M M

i i

E lastChange L

E lastChange E

E lastChange E

E lastChange E

)

As we can see from the third step, the edge locations are 
traced back in reverse order. Their number is different for 
each input, which is an image row, or a segment of it. 
These change points are essentially the edge pixels and 
every thing else is considered background. 

2.2 Cost Function 

The cost function model we use is adopted from [5], [6] 
and is based on the Bayesian posterior for a segmented 
Poisson model and is given by: 

( ) log ( 1) ( 1) log( 1)i i iC R G G Ni ,
Where: 
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ni is the number of pixels at gray level li, which we denote 
ni, and gi represents the total number of photons in Ri or
lini gi. The derivation of the model is given in [5]. One 
important observation for our thresholding problem is the 
fact that the cost function has the desired property of 
depending only on the sum of all the gray levels present in 
an interval and the number of cells in that interval which 
are called sufficient statistic. Additionally, this cost 
function was derived in the context of a data model 
representing the measured quantity as constant over each 
element of the partition—a piecewise constant model. 
Therefore, the model is basically identifying significant 
structures, i.e. regions, by their conformity to the piecewise 
constant model. We have experimented with other cost 
functions based on the Gaussian distribution and obtained 
similar results. We are also experimenting with other cost 
functions such as entropy and cross entropy for different 
applications. 

3. ALGORITHM

Based on the image model, dynamic partitioning of an 
interval and the choice of a cost function, we introduce the 
edge detection algorithm. The algorithm works separately, 
and in an identical way, on each dimension (rows and the 
columns of the image.)  For each dimension, we break each 
row into identical number of segments and process each 
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segment separately. We then feed each segment to the 
dynamic partitioning algorithm 

Following are the general steps for the algorithm 

1. Break each row into identical segments 
2. Feed each segment with the cost function to the 

optimal partitioning dynamic programming 
algorithm 

3. Mark change points as edge points and others as 
background

4. Repeat 1-3 for the columns 

Segmenting each dimension’s data signal is only necessary 
to reduce the complexity of the algorithm and in off-line 
applications the whole row can be used as an input to the 
optimal partitioning algorithm. In addition to the image and 
its dimensions, the algorithm takes two more parameters: 
the prior and the cost function. The prior implicitly 
determines the number of classes with large values giving 
smaller number of edge pixels in the output image. The cost 
function can be modified to fit the application at hand. In 
addition to the Poisson cost function used in this paper, 
other cost functions based on Gaussian distribution or 
entropy can be used as well. Some of these cost functions 
have the advantage of incorporating local features from the 
image, albeit at higher computational cost. 

4. SIMULATION RESULTS

In testing the effectiveness of our algorithm, we have 
obtained excellent results for many images of low and high 
details. The results of testing our algorithm on the Lena 
image are shown in Figure 2 for different priors as well as 
for a noisy version of the image. Each edge image is 
produced by running the algorithm on the image rows then 
the image columns (which can be done in parallel if 
needed). The algorithm produces the edge pixels, given 
here as white pixels, with the understanding that every 
other pixel is considered as background, given here as 
black pixels.The prior given to the algorithm is adjusted to 
give the desired level of edge details. We treated this prior 
as a parameter for the algorithm and allowed it to vary to fit 
the desired level of edge structure or details. It reflects our 
prior knowledge about the structure of the image at hand. 
Therefore, we can think of the prior as a means to produce, 
hierarchically, edge images at different scales of structure, 
while the image spatial dimensions or support are not 
changed. Qualitatively, increasing the prior acts as a 
penalty against fine image structures and therefore 
produces smaller number of edges by disregarding any less 
significant ones. Typical prior values used in the simulation 
were in the range of 8 to 64,  values that were determined 
experimentally. 

The algorithm has shown robustness to different levels and 
types of noise as well. Part (b) of Figure 2 shows a 
corrupted Lena image with Gaussian noise of zero mean 
and standard deviation of 10, variance of 100. Part (f) of 
the figure shows the result of our edge detection algorithm 
with a prior of 32. Evaluating the image subjectively, we 
can see that the algorithm succeeds in producing faithfully 
all the significant edges of the image. Some of the noise 
artifacts can easily be eliminated using post processing 
operations including morphological ones. 

5. CONCLUSION

We presented a new edge detection algorithm based on 
dynamically partitioning the image rows or columns into 
regions of relatively uniform gray levels separted by edge 
or transition levels using an appropriate cost function. The 
algorithm extracts the edges as the statistically significant 
structures in the image. The method also incorporates a 
prior value that works as a penalty parameter that controls 
hierarchically the amount of details present in the image, 
thus allowing edge generation at different scales of 
structure while keeping the spatial dimensions of the image 
intact. Experimental results show excellent results for 
different cost functions, including the presented Bayesian 
posterior Poisson model, and robustness in the presence of 
low to mild amounts of Gaussian noise. 
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(a)      (b)     (c) 

(d)      (e)     (f) 

Figure 2. (a) Original Lena Image. (b) Original Lena Image with Gaussian noise of S.D. of 10.  
(c) Edge image with Prior of 16 (d) Edge image with Prior of 32 

(e) Edge image with Prior of 40 (f) Edge image of the Lena noisy image with Prior of 32 
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