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ABSTRACT

The hidden Markov field (HMF) model has been used in
many model-based solutions for image segmentation, and
generally gives satisfying results. However, when the class
image is non stationary, the unsupervised segmentation
results provided by HMF can be poor. In this paper, we
propose a new model based on triplet Markov fields (TMF)
and the Pearson system which enables one to deal with non
stationary hidden fields and correlated, possibly non
Gaussian noise. Moreover, the nature of marginal
distributions of the noise can vary with the class. We specify
a new general parameter estimation method and apply it to
unsupervised Bayesian image segmentation.

1. INTRODUCTION

Hidden Markov fields (HMF) and Bayesian segmentation
based on them, can be of outstanding efficiency when
dealing with the important problem of unsupervised image
segmentation. In such models, we have the hidden Markov
field SssXX ∈= )( and the observed one SssYY ∈= )( , and the

problem is to estimate xX = from yY = . The simplest

models, in which X is a Markov field and the random
variables )( sY are independent conditionally on X , can

give good results in many situations; however, they turn out
to be too simple when considering complex images (non
stationary, textured, strongly noisy, … ). A pairwise Markov
field (PMF) model has then been proposed, which consists
in directly considering that the pair ),( YXZ = is a Markov

field [11]. This implies that both conditional distributions
)( xyp and )( yxp are Markov : the former fact allows one

to better model complex noises, and the latter one still
allows one to apply Bayesian segmentation. Afterwards,
triplet Markov fields (TMF) have been proposed, in which
one introduces a third random field SssUU ∈= )( and assumes

the Markovianity of the triplet ),,( YUXT = [10]. TMF can

then be applied in numerous situations, with different
interpretations for the third field U . In particular, one
possible meaning for SssUU ∈= )( is to assume that uU =
defines different homogeneities of ),( YX . This means that

the Markov field distribution ),( uyxp is a non-stationary

one [2] (let us also notice a recent Markov tree based model
allowing one to deal with non stationary images [9]).

Otherwise, an important problem is to manage non Gaussian
and correlated noise. In fact, such noises occur in many
situations, like those related to sonar images or to radar ones
([6], [7], among others). This has not been solved, to our
knowledge, in the hidden Markov fields context and we thus
propose here a new model which extends the model
proposed in [2]. Moreover, we propose a “generalized
mixture” estimation method, which means that the very
nature of the conditional marginal distributions )( ss xyp are

not know exactly and can vary with the class sx . Such

methods have already been proposed in the case of classical
HMF [4], hidden Markov chains[5], and hidden Markov
trees[8]. Therefore, here we extend the methods in [4] to the
TMF considered.

Finally, the paper contains the following contributions :

(i) the triplet Markov fields used in non stationary images
presented in [2] are extended to the general case where the
noise can be correlated and its marginal distributions

)( ss xyp can be of any form and can vary with the class sx ;

(ii) a new model identification method, which is a
“generalized mixture” estimation method based on the
Pearson system is proposed, and validated via experiments.
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2. MODELLING NON STATIONARY IMAGES WITH
TRIPLET MARKOV FIELDS

2.1. Gaussian noise

Let us shortly recall the model proposed in [2]. First, let us
consider the very classical Markov field SssXX ∈= )( with

whose distribution is defined by the energy
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where HC is the set of couples of pixels horizontally

neighbors, VC is the set of couples of pixels vertically

neighbors, and ( )ts xx ,δ verifies ( ) 1, =ts xxδ for ts xx = ,

and ( ) 0, =ts xxδ for ts xx ≠ . Furthermore, let us consider

classically that the random variables SssY ∈)( are independent

conditionally on SssXX ∈= )( . The distribution of the

classical HMF ),( YX is then written

( ) ∑
∈

+−=
Ss

ss xypLogxWyxp ))]((exp[),( γ (2.2)

Such HMF have been generalized in [2] by considering a
Markov field ),( UX , with two stationarities { }ba,=Λ ,

whose distribution is defined by the energy
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with ( ) 1,,* =auu tsδ for auu ts == , and ( ) 0,,* =auu tsδ
otherwise and ( ) 1,, =buu tsδ for buu ts == , and

( ) 0,,* =buu tsδ otherwise. We can easily verify that for

ux = the energy (2.3) is reduced to the energy (2.1);
therefore the model (2.3) is a generalization of the classical
model (2.1).
Finally, the distribution of ),,( YUX is defined by
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Both models HMF given by (2.2) and TMF given by (2.4)
allows one to estimate )( yxp . In HMF this is classically

done from (2.2) using the Gibbs sampler, and in TMF this is
done in two steps : (i) estimate ),( yuxp ss by the Gibbs

sampler; (ii) calculate ∑
Λ∈

=
su

sss yuxpyxp ),()( . Therefore,

the Bayesian Maximum Posterior Mode (MPM) can be used
in both HMF and TMF given by (2.2) and (2.4),
respectively.

2.2. Non Gaussian noise

In the Gaussian case above, let us consider a set of
independent Gaussian variables SssY ∈)’( , with 0]’[ =sYE ,

1]’[ =sYVar for each Ss ∈ , and such that SssYY ∈= )’(’ is

independent from SssXX ∈= )( and SssUU ∈= )( . Then we

can say that SssYY ∈= )( is obtained from SssYY ∈= )’(’ by

’’ ’
ss XsXs mYY += σ

The first idea of this paper is to use the same set of
independent variables SssYY ∈= )’(’ to obtain any other kind

of distribution. In fact, putting F the cumulative function of
the Gaussian distribution )1,0(N , and putting G the

cumulative function of the desired distribution, we know that
)’(1

ss YFGY �−= has the desired distribution G .

The second idea is to consider a Markov Gaussian field

SssYY ∈= )’(’ instead of the set of independent variables

above.
Finally, the new model we propose is the following. Let

),( UX be a Markov field, and let SssYY ∈= )’(’ be a Markov

Gaussian field independent from ),( UX and such that

0]’[ =sYE , and 1]’[ =sYVar . For each class iω in

{ }kωω ...,,1=Ω , let iG be the cumulative function of the

desired distribution )( iss xyp ω= , and let F be the

cumulative function of the Gaussian distribution )1,0(N .

Then the TMF we propose is ),,( YUXT = , with

)’(1
sXs YFGY

s
�−= .

Therefore we obtain a model such that the random variables
)( sY are correlated conditionally on X (the noise is

correlated), and such that the marginal distributions
)( iss xyp ω= are not necessarily Gaussian (their shape can

even vary with the class). For example, assuming that
),( UX is a Markov field defined by the energy (2.3), and

assuming that the distribution of the Gaussian Markov field

SssYY ∈= )(’ ’ is given by the energy ( ) ∑
∈

=
Cc

cc yy )’(’ ϕϕ , then

the distribution of ),,( YUX is given by

( ) ∑
∈

−−−=
Cc
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c

))((,exp[),,( 1 �ϕγ (2.5)
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where Sssxcx yGFyGF
sc ∈

−− = ))(()( 11 �� .

3. MODEL IDENTIFICATION

In the first sub-section we assume that the shapes of
)( iss xyp ω= are known (they can vary with the class), and

we describe how the parameter estimation method proposed
in the Gaussian case in [1] can be extended to such a model.
In the second sub-section we specify how the Pearson
system can be used to search, in addition, a good shape of

)( iss xyp ω= for each class iω . This second case is an

extension to the new model (non stationary hidden field and
correlated noise) of the method presented in the case of
classical HMF in [4].

3.1. Parameter estimation

Let us distinguish three kinds of parameters. We will
designate by α the parameters defining the Markov
distribution of ),( UX , by 1β the parameters defining the

Markov Gaussian distribution of ’Y , and by 2β the

parameters defining the k cumulative functions 1G , …, kG .

Thus )...,,( 22

1

2

kβββ = , and each 2

iβ defines iG . We will

assume that we dispose of k estimators 2

1β̂ , ..., 2ˆ
kβ such that

each 2ˆ
iβ estimates 2

iβ from samples produced by iG . Thus,

the problem is to estimate ),,( 21 ββαθ = from yY = . The

method we propose is an iterative one and extends to the
proposed model the “Iterative Conditional Estimation”
(ICE) based method described in [1].
Let 0θ an initial value of θ . The next value 1+qθ is defined

from qθ and yY = in the following way :

(i) simulate Ss

q

s

q xx ∈
+= )( 1 according to ),( qyxp θ by

Gibbs sampler;
(ii) estimate 1+qα from qx as explained in [2];

(iii) for each ki ...,,1= , let { }i

q

s

q

i xSsS ω=∈=+1 . For each

ki ...,,1= , use the restriction of y to 1+q

iS and 2ˆ
iβ to

determinate 12 )( +qβ , which gives 1+q

iG ;

(iv) define Sssyy ∈= )’(’ by )(’ 11
s

q

xs yGFy q
s

+−= � , and use ’y

to estimate 11 )( +qβ by the method in [2] (recall that

Sssyy ∈= )’(’ is a Gaussian Markov field).

3.2. Generalized mixture estimation with the Pearson
system

Let us briefly recall what the Pearson system is and how the
first four moments define a probability distribution in it.

The Pearson system is the set of probability densities f

verifying

)(
)(

2
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+−= (3.1)

where a , 0c , 1c , and 2c are real parameters. When varying,

these parameters define eight different shapes of f , called

shape of “kind I”, “kind II”, and so on. Important is that
these shapes can be found from the first four moments
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and then the eight different shapes are given by :
type I : 0<c ; type II : 01 =γ and 32 <γ ; type III :

0632 12 =−− γγ ; type IV : 10 << c ; type V : 1=c ; type

VI : 1>c ; type VII : 01 =γ and 32 >γ ; type VIII : 01 =γ
and 32 =γ . Otherwise, it can be shown that the type I

corresponds to the beta distributions of the first kind, type
III are gamma distributions, and type VIII are Gaussian
distributions (the shapes of other types can be seen in [4]).
Therefore, knowing the first four moments we know what
shape we are faced with and, in addition, these moments
give the parameters of the corresponding distribution. The
Pearson system can then be used to estimate the following
“generalized mixture” : let us assume that for each ki ...,,1=
the distribution iG is in the Pearson system, but we do not

know what the shape of this distribution is. Such situations
can occur in radar images. In fact, the shape of class
distributions can vary with the class and, for a given class, it
can even very with time [4]. Faced with such a situation, we
can use in the method above the following estimators

2

1β̂ , ..., 2ˆ
kβ : each estimator 2ˆ

iβ estimates the first four

moments of iG , which gives its shape and the parameters.

4. EXPERIMENTS

Let us consider the following example. Each sX takes its

values in the set of two classes { }21 ,ωω=Ω , and each sU

takes its values in the set of three classes { }cba ,,=Λ (there

are three different homogeneities in the class image xX = ).
A realization ),( ux of the Markov field ),( UX is then

simulated by Gibbs sampler and presented in (a), (c) in
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Figure 1 below. The class image is then noised according to
)( 1ω=ss xyp , which is a gamma distribution (type III in

the Pearson system), and )( 2ω=ss xyp , which is a beta of

the first kind distribution (type I in the Pearson system),
More precisely, the parameters considered are

( )2,1)( 1 Γ== ωss xyp , and ( )1,2)( 2 Β== ωss xyp .

Concerning the Gaussian Markov field ’Y , we have taken

the following energy ( ) ]’’2.0)’([
2

1
’

),(

2 ∑∑ −+=
ts

ts
scS

s
yyyyϕ .

The noisy image yY = is presented in (b), Figure 1, the

estimated u , using the new model, is in (d). Finally,
unsupervised segmentation results based on the new model
with non Gaussian noise and on the Gaussian one are
presented in (e) and (f).

(a) class image x (b) observed yY =

(c) true u (d) estimated u

(e) Non Gaussian TMF
error ratio = 8.81%

(f) Gaussian TMF
error ratio = 19.14 %

Figure 1. Class image x (a), its noisy version (b), u
corresponding to x (c), estimated u (d), unsupervised
segmentation result based on non Gaussian model (e), and
Gaussian one (f).

5. CONCLUSION

In this paper, we have presented a new model and a new
parameter estimation method. The model is a particular
Triplet Markov field (TMF) allowing one to deal with
hidden non stationary random field, with correlated and non
Gaussian noise. We also proposed a parameter estimation
method adapted to the new model and presented an example
of an unsupervised image segmentation.
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