
IMPROVED IMAGE SEGMENTATION WITH A MODIFIED BAYESIAN CLASSIFIER
Thomas P. Weldon

Department of Electrical and Computer Engineering, University of North Carolina at Charlotte,
Charlotte, NC, USA

ABSTRACT

A method for improving texture segmentation results by
slightly modifying the decision surfaces of a Bayesian
classifier is presented. Although a Bayesian classifier
provides optimum classification within homogeneous
regions, it does not necessarily provide accurate localization
of region boundaries. In the proposed method, a modified
classifier is formed by using a mixture probability density.
This approach has the advantage that it is easily
implemented in multidimensional classifiers such as those
used in classifying the vector output of a filter bank.
Experimental results demonstrate improved texture
segmentation using the proposed classifier.

1. INTRODUCTION

In practice, a Bayesian classifier based directly on
predicted filter bank output statistics performs well within
regions, but the locations of boundaries are frequently
displaced from their true locations [1-3]. To reduce these
errors, a modified Bayesian classifier is proposed that uses a
mixture probability density to slightly modify the decision
surfaces. Although a modified decision surface could
degrade classifier performance within regions, experiments
suggest that the improved performance near boundaries
outweighs any degraded performance within regions. These
problems become even more complex when using multi-
resolution filters and feature vectors.

The contradictory demands of low classification error
within regions and accurate boundary localization are further
complicated when the problem of designing the filters is
included in the texture-segmentation problem. While low
bandwidth filters tend to improve classification error by
reducing feature variance, wider bandwidth filters offer
better accuracy near region boundaries. The solution of this
larger problem would require joint optimal design of a
classifier in conjunction with a bank of filters, and is beyond
the scope of the present discussion. Therefore, this paper
focuses the smaller problem of improving the segmentation
results for a given a set of filters by improving the classifier
design. For the purpose of illustrating the proposed method,
experimental results are presented for a texture-segmentation
example.

One reason for choosing a texture segmentation
application is that the feature space is often
multidimensional, and is often created with some sort of
filter bank. The resulting multidimensional feature space
then allows testing of the proposed classifier for the more
difficult case of multivariate data. In the texture-
segmentation problem, the use of a vector Bayesian
classifier offers advantages over previous efforts.
Thresholding methods used by Bovik [4] and by Dunn and
Higgins [5] imply a per-channel decision scheme that does
not take advantage of the multivariate statistics of multiple
channels. In other approaches using non-parametric
classifiers, Jain and Farrokhnia [6] used a clustering
algorithm for classification, and Randen and Husoy [7] used
a Kohonen learning vector quantizer. Although such non-
parametric classifiers can provide effective classification,
they offer limited theoretical insight and may conceal
shortcomings elsewhere in the segmentation system.

Previous researchers have also investigated the
development of optimal edge detectors in terms of a
combined error measure including edge detection and edge
localization [8-10]. Bovik also briefly treated the
localization problem for a simple scalar decision process [4],
but did not combine a classification error with the
localization error in his analysis.

Therefore, an image segmentation method is proposed
that is based on a classical Bayesian classifier, but with
decision surfaces modified to more accurately locate
boundaries between regions. The proposed use of a mixture
density to modify decision surfaces provides a simple
method for improving localization performance of the
classifier. In particular, the mixture density approach allows
a straightforward implementation for multidimensional
feature vectors.

2. APPROACH

To illustrate the new method, a one dimensional
classifier is first considered. Then, using insights drawn
from the one-dimensional example, the use of a mixture
density is proposed to improve the classifier performance at
texture boundaries. The mixture density is used to alter the
balance between localization errors near region boundaries
and classification error within homogeneous regions. After
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Fig. 1. Two Gaussian density functions corresponding to
filter output features for two different classes: µµµµ1 = 1, σσσσ1 =
0.1; µµµµ2 = 7,σσσσ2 = 1, optimum classification threshold = 1.6.

Fig. 2. One-dimensional step corresponding to texture
boundary, with second solid curve corresponding to
filtered step, and dashed line corresponding to optimum
threshold from Fig. 1. The threshold of 1.6 applied to the
filtered step results in a boundary displacement error of 5
units to the left of the actual boundary location.

the one dimensional example is discussed, the mixture
density is extended to the case of a multivariate classifier.
The simplicity of using the mixture density notion for the
more difficult multivariate problem is the primary
motivation for choosing this approach.

To illustrate the mixture density's effect on classifier
performance, it is useful to first consider the two one-
dimensional Gaussian density functions depicted in Fig. 1.
The two probability density functions in Fig. 1 represent the
output statistics of a single feature vector (i.e., the output of
a single filter), with each function corresponding to a
different class or image region. The optimum classification
threshold of 1.6 coincides with the intersection of the two
density functions, assuming the two classes are equally
likely. If this threshold were used, the classifier would
minimize error within homogeneous regions of either class.
Note that a second optimal threshold exists, but does not
contribute materially to the error for the case shown.

Next, consider the optimum threshold for minimizing the
error due to incorrectly locating the position of a boundary
between two regions. A one-dimensional step from a feature
amplitude of 1 to an amplitude of 7 is shown in Fig. 2. The
values of 1 and 7 on either side of the step correspond to the
mean values of the density functions in Fig. 1 and, therefore,
represent a transition between the two classes corresponding
to the two density functions. Filtering this step with a
Gaussian lowpass filter results in the second solid curve and
corresponds to the effect of spatially filtering the boundary,
as commonly done in creating features for segmentation.

The optimal threshold for the filtered step of Fig. 2, from
standpoint of accurately locating the boundary, is at the
intersection of the two solid curves in Fig. 2. This point is at
the mean of the two amplitudes (µ1 + µ2)/2 = (7+1)/2 = 4.
The optimum classification threshold of 1.6 is shown as a

dashed line in Fig. 2; applying this threshold to the filtered
step would result in a displacement error of 5 units to the left
of the step in locating the step boundary. Thus, the optimum
classification threshold of 1.6 conflicts with the optimum
localization threshold of 4.

This is the commonly encountered filtering tradeoff
between the reduction of noise within regions and the
blurring of boundaries between regions. However, it is also
possible to modify the classifier to tradeoff increased error
within regions for reduced error at boundaries between
regions. In the foregoing example, the situation of Fig. 1
represents a well-separated class pair with a low associated
classification error. It is apparent that changing the
classification threshold from 1.6 to 4 in Fig. 1 will not
seriously degrade classification error. In fact, for this
particular example the classification error within
homogeneous regions would change from a value of
approximately 10-9 to a value of 10-3. On the other hand, a 5
pixel boundary error as in Fig. 2 would correspond to a
boundary localization error of (5×4×100)/2562 = 0.03 for a
100×100 pixel square region in a 256×256 image. This
implies the potential to advantageously reduce the
localization error from 0.03 to some lower value, at the
relatively insignificant cost of a classification error of 0.001.

Therefore, by placing the threshold nearer to the
localization threshold of 4, localization error is greatly
reduced while only modestly increasing classification error.
One method to achieve this shift in threshold is to artificially
distort the original density functions in Fig. 2 using a
mixture density to generate the density functions shown in
Fig. 3. It is emphasized that this distortion is performed only
to shift the classifier decision thresholds and does not
represent any change in the statistics of the filtered features.
Below, details of the mixture density are next discussed.
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Fig. 3. Two mixture densities based on the original
densities of Fig. 1, with new optimum classification
threshold of 4 that would greatly reduce the boundary
displacement seen in Fig. 2.

3. MULTIVARIATE CASE

In the multidimensional case, similar displacement of
segmentation boundaries occurs in experiments with
multivariate classification of the filtered feature vectors.
The following discussion illustrates the proposed method for
the particular case of multidimensional feature vectors as
would be generated in multi-channel filter decompositions in
texture segmentation.

Earlier results [1-3] predict a multivariate Gaussian
model for the vector output statistics of filtered texture
features. In this, the probability density for class i is
pi(m,µµµµi,Ci) where
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where m is the k-dimensional feature vector, µµµµi is the k-
dimensional feature vector mean for class i, Ci is the k×k
covariance matrix for class i, and k is the number of features.
Given the multivariate statistics, the Bayesian classifier
would then classify any measured feature vector mp as being
a member of class α, if

pαααα(mp,µµµµi,Ci) > pββββ(mp,µµµµi,Ci); ∀ β ∈ {1, 2, …, N},

where α∈{1, 2, …, N}, and N is the number of classes.
However, when a Bayesian classifier based on the

predicted multivariate Gaussian density function is
employed, experiments show a large amount of localization
error at texture boundaries; i.e., the boundary is displaced
from its true location.

Based on the preceding one-dimensional argument and
based on experimental findings, the classifier is modified
using a mixture-density consisting of the average of two
multivariate-Gaussian densities. The mixture density
provides an effective means for shifting the classifier's multi-
dimensional decision surface in a manner that reduces
localization error near texture boundaries while not
significantly degrading the classification error within
homogeneously textured regions. This is readily
implemented for the multivariate-Gaussian statistics of the
filter-channel outputs.

To construct the proposed classifier, first construct
covariance matrix Cmax by using the the largest elements in
the N covariance matrices Ci. Then define the mixture
density as

pimix(m) = { pi(m,µµµµi,Ci) + pi(m,µµµµi, Cmax) }/2.

The Bayesian classifier with the mixture distribution is
then simply implemented for any measured feature vector mp

by classifying it as a member of class α, if

pααααmix(mp) > pββββmix(mp) ; ∀ β ∈ {1, 2, …, k}.

Fig. 3 illustrates the mixture densities for case shown in
Fig. 2. By inspection of Fig. 3, the new decision threshold is
near a value of 4, where the two densities intersect. This
new threshold near 4 closely coincides with the optimum
localization threshold of 4 seen in Fig. 2.

4. RESULTS

The new method was tested on a wide range of natural
and synthetic textured images. In these experiments, the
classifiers were implemented with the mixture-density
classifier. Experiments employed 256x256 pixel 8-bit gray-
scale images where the average grayscale of all textures
were equalized to prevent biased segmentation results that
may be caused by leakage of the DC component through the
filters.

The effects of the mixture-density classifier are shown in
Fig. 4. The image in Fig. 4(a) consists of three textures
(N=3): an outermost region of noise, a middle ring of d21
"french canvas," and an innermost square region of d55
"straw matting" from the Brodatz texture album. With
misclassified pixels in black, Fig. 4(b) shows the
segmentation error when the mixture density is not used; i.e.,
Bayesian classification without a mixture density. For this
segmentation, three filters were used (k=3), resulting in a 3-
dimensional feature vector m. Fig. 4(c) shows the
segmentation error when the mixture density is used for
classification. The improvement near texture boundaries
that is apparent in comparing Figs.4(b) and (c) is confirmed
by measurements. Total classification error is 10% in Fig.
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Fig. 4. Effects of mixture density. (a) Input composite image, outer border = uniform noise, middle ring = d21 "french
canvas," center square = d55 "straw matting." (b) Segmentation error for (a) without mixture distribution, black =
misclassified pixel, measured error=0.10. (c) Segmentation error for (a) with mixture distribution, measured error=0.05.

4(b) without using the proposed mixture density, and is
reduced to 5% in Fig. 4(c) when the mixture density is used.

4. SUMMARY

The experimental results demonstrate the effectiveness of
the modified Bayesian classifier in reducing total
segmentation error. These results show that a mixture
density can be used to improve classifier performance near
classification boundaries.
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