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ABSTRACT

We propose a novel multi-class method for texture segmenta-
tion. The segmentation issue is stated as the minimization of
a region-based functional that involves a weighted Kullback-
Leibler measure between distributions of local texture fea-
tures and a regularization term that imposes smoothness and
regularity of region boundaries. The proposed approach is
implemented using level-set methods, and partial differential
equations (PDE) are expressed using shape derivative tools
introduced in [12].

As an application, we have tested the method using co-
occurrence distributions to segment synthetic mosaics of tex-
tures from the Brodatz album, as well as real textured sonar
images. These results prove the relevance of the proposed ap-
proach for supervised and unsupervised texture segmentation.

1. INTRODUCTION

Texture segmentation has long been an important topic in im-
age processing. It aims at segmenting a textured image into
several regions with the same texture features. An effective
and efficient texture segmentation method will be very use-
ful in applications like the analysis of aerial, biomedical and
seismic images as well as the automation of industrial appli-
cations.

Recently, features computed as statistics of local filter re-
sponses have been largely used in texture analysis and sev-
eral studies have shown the relevance of marginals of a large
set of filters to characterize textures. Zhu et al.[2] proposed
a maximum entropy theory for learning probabilistic texture
models from a set of empirical distribution of filter responses.

Gimel’farb used the difference co-occurrence statistics to model

texture [6] and later, Xiuwen Liu et al.[3] proposed a local
spectral histogram, defined as the marginal distributions of
feature statistics for texture classification.

Image segmentation is also an active field of research.
Pixel-based and region-based techniques can be seen as the
two major categories of approaches. Whereas pixel-based
schemes, such as standard Markov random fields, consider

image segmentation as a labeling issue at the pixel level, region-

based approaches directly search for a relevant image parti-
tion. In this second category, we can cite active contours or
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deformable models [1, 9, 7]. As far as texture segmentation
is concerned, region-based techniques appear more adapted,
since the texture characteristics are defined at the region level.
Indeed, pixel-based texture segmentation generally relies on
the use of local texture features computed within a predefined
window around each pixel. Hence, texture features extracted
for pixels close to region boundaries involve a mixture of tex-
ture characteristics, which may lead to a lack of accuracy in
localizing the boundaries of the texture region. In contrast,
region-based approaches, especially active contours associ-
ated with a level-set setting, offers an efficient manner to cope
with texture and geometrical features at the region level.

In this work, we aim to combine the use of statistical dis-
tributions of filter responses for texture characterization and
region-based image segmentation within a level set frame-
work. The proposed approach relies on a texture-based sim-
ilarity measure defined as a weighted Kullback-Leibler mea-
sure between distributions of texture filter responses com-
puted inside regions and on regularity constraints set to re-
gion boundaries. This work can be viewed as an extension of
the approach presented in [12], where the distributions of lo-
cal features (namely, gray-level histograms) were also used to
characterize each region. The main contributions of this paper
are the application to texture segmentation and the treatment
of supervised and unsupervised multi-class issues.

The presented paper is organized as follows. In Section
2, texture characterization and modeling are described. Sec-
tion 3 briefly reviews active contour methods and the level set
approach. In Section 4, the energy functional and its deriva-
tion are presented and the curve evolution equations are com-
puted. Section 5 presents the generalization of the proposed
approach to the unsupervised case and in Section 6 various re-
sults are shown on synthetic images containing textures from
the Brodatz album and on natural sonar images.

2. TEXTURE DESCRIPTION

Features computed as statistics of local filter responses are
widely used for texture analysis and segmentation. Many
statistical and filtering approaches have been compared [4].
Among the most effective features are co-occurrence matri-
ces, wavelet frames, quadrature mirror filter-banks (QMF)
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and Gabor filters. It should be noted that none of these feature
classes outperforms the others for all textures.

Here, we will not address the problem of feature selection,
but we choose a set of different filters computed for different
parameters. Let hj,j = 1 : J be the image of filter responses
to the 5" filter taking its values in R;. R is a set of R™, m
is the filter output value dimension and let P;,j = 1 : J, be
their respective distributions. Using Parzen window estima-
tion, Pj(a) a € R; for the j** distribution is computed on a
domain €2 as:

P, (a,9) = ﬁ /Q 0o, (hy(@) —a)dz. (1)

where g, is a Gaussian kernel of mean 0 and variance o;.

To compare feature histograms, we use the Kullback-Leibler

divergence which is a relevant similarity measure between
distributions. The Kullback Leibler distance (K L) between
two distributions P and @, is defined as:

KMQJvzfQ@mW(%dex @

For two distribution sets P = {P;},_; ;and Q = {Q;},_;.;
we define their dissimilarity measure as follows:

J
KL,(Q,P) =) wiKL(Q;,F)) (3)

=1

whfare {w;};_;.; are weights sgch that Zj:; w;‘-’ = 1. The
weights can be computed according to the discrimination pow-
ers of the associated features (for instance, Fisher scores [11]).

3. ACTIVE CONTOURS AND LEVEL SET
IMPLEMENTATION

The idea behind active contour segmentation methods is to
evolve a parametric curve C(s,t) in the image domain 2. s
may be its arc-length and ¢ is an evolution parameter. The
curve evolution is described by a partial differential equation
(PDE) that drives the active contour to a minimum of a func-
tional. The PDE is generally derived from an energy criterion
as follows:

0C (s, 1)

ot

with C(s,0) = Cy an initial curve defined by the user. F' is
the velocity vector and IV is the inward normal of C'.

The parametric representation of the curve C'(s,t) is un-
suitable for many applications since it does not allow for au-
tomatic change of topology, such as merging and breaking.
Level set methods, introduced in Osher and Sethian [10] to
track moving interfaces in the community of fluid dynamics,
circumvent these topological problems. The key idea of level

=FN (4)

set methods is to represent the evolving curve I' = 92 with
an implicit Lipschitz function ¢ which is defined by:

o(z,t) >0ifz € Q
o(z,t) =0ifz €T (5)
p(z,t) < 0 otherwise

The region 2 is entirely described by the level sets (¢ > 0)
and its geometrical quantities can be expressed by .
Evolving the curve C' in its normal direction with speed
F amounts to solving the differential equation [10]:
dyp

where (g is the initial contour.

4. SUPERVISED TEXTURE SEGMENTATION

Given a set of K texture models, we aim to determine the
partition of the image into homogeneous regions according to
texture characteristics. We assume that each texture T, k =
1 : K is characterized by a set Q¥ of its filter response distri-
butions.

The segmentation issue is stated as the minimization of an
energy criterion E = E' + E? + E3, where E! is a texture-
based data-driven term, E2 a regularization term and E®a
term needed to cope with multi-class segmentation.

4.1. Functional terms

E' is evaluated as the log-likelihood of a given partition with
respect to texture models:

K
E' =) |0 KLy(Q, P()). (7)
i=1
where P(£;) is a set of filter response histograms estimated
inside the region €;.
E? penalizes the region contour lengths and is expressed
by:

K
E* =) 70,7 € R, ®
i=1
Using level set functions and regularized Heaviside and delta
functions, E? can be written as follows (see [7] for details):

K
W=Z%mewmm. ©)
i=1

H, and §, are Heaviside and delta functions respectively, so
that: when @ — 0, H, — H and §, — 6§, and H, = §,, (in
the sense of distributions).

1 1
= <1+ L4 Zsin (E)> if|z| <«
2 a 7 «a

life >«
Oifx < —a

H,(z) = (10)
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%( +cos(a)) if |z] <« (a1
0if |z| < «

da(z) = {

E3 is an additional term, required to cope with multi-class
segmentation in order to fulfill the image partition condition.
In the literature, there are several techniques for dealing with
the representation of the different classes and their boundaries
by level-sets [8, 9]. Our multi class model is inspired by the
work of C. Zhao et al.[8]. The idea is to associate a level-set
function ¢,k = 1,..., K to each region {1 and the image
partition condition is expressed by the following term:

A X ’
_2/Q<l;Ha(<pk)—1> dz

4.2. Computation of the evolution equation

12)

The evolution equation of @i,k = 1,..., K related to the

global functional F is given by:

0% _ 9B +0 B +0 B

ot (13)

0 E*,i = 1,2, 3 is the evolution equation term related to the
functional term E¢,7 = 1,2, 3.

0 E,i = 2,3 are directly estimated from level set func-
tions [1, 7].

. \Y%
8 B (1) = Y00 (ip0) div (W“”“ ) L as

<Pk|

K
8 E*(pk) = —0a (pr) A (Z (Ho (3) = 1)) (15)

i=1
The evolution equation related to E* is more complex, since it
involves computations over the spatial support of each region.
To differentiate E', we use shape derivative tools, especially
the Gateaux derivative theorem given in [12]. The Gateaux
derivative of E! in the direction V is given by the following
equation:

<E1’(m),v = 7/60. KLy (Q, P (%))

+§J:w2 Ty aLON (hi (@) — a)da) | (V.N)da(z)
j=1 ! R; Pj(ayﬁi)ga ! '

(16)
where N is the unit inward normal to 9Q; and da its area
element. 8 E! is then given by:

8 E' (k) = da(pr)(— K Luw(QF, P(Q))
) Q¥ (@)
- v (1— Bra, o0’ (hj(z) — a)da)) (17)

i=1 P a Qk

additional term

From this expression, we can notice the appearance of an ad-
ditional term, which is the only one that depends locally on

the value of the filter response at the pixel level. In fact, for
small values of 0,7 = 1 : J, the additional term resorts to:
oo St (1) )
— x 2 S A
¢ j:]- ! P] (hJ (x)7 Qk)

TR
(i.e., if more pixels with response value equal to h;(z) are
inside the region {2 than in the reference class Tk), the ad-
ditional term related to h; is negative and according to the
evolution equation (Eq.13), this leads to a decrease of ¢ (x)
and consequently the rejection of the pixel z from region Q.

So, considering a given filter response h;,

5. UNSUPERVISED SEGMENTATION

The method can be generalized to the unsupervised case. Ini-
tial level-sets are given by a k-means segmentation based on
the texture model and the dissimilarity measure introduced in
the previous sections. The unsupervised segmentation then
alternates between estimating texture models {Q;c }:

Q4(8) = /Q Ha(pi)go (hy(z) — B)dz, f € Ry, (19)

and updating the segmentation partition according to Eq.13.

6. EXPERIMENTAL RESULTS

We experiment the proposed segmentation method using as
filter response histograms, a set of co-occurrence distributions
[5] computed for a displacement of one pixel in the four main
directions (0°,45°,90°, —45°). The additional term for this
feature set is expressed as follows:

NN Q}(a, 8)
*j;’wj (1 - /[I,Ng]2 m!]a(l(w) —a)go(I(z;) — ,B)dadﬂ) )
(20)
where z; is the translate of  according to the j th direction,
N g is the number of gray-levels. Here we quantize the image
with the k-means algorithm to Ng = 10 and we set w; =
1,Vj.

As most common methods, level-set functions are chosen
to be the signed Euclidean distance to their zero level-sets.
They are updated using gradient minimization techniques and
re-initialized using a PDE based approach [7].

We initialize ¢y according to an initial moving-window
segmentation. Given the set of co-occurrence distributions
P(z) estimated on an image window centered at z, pixel z is
initially classified according to the following decision rule:

label(z) = arg mkin KL, (QF, P(x)) (1)
where K L,, is the weighted KL distance between co-occurrence
distributions P(z) at site z and texture models {Q} (Eq.3).
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Figure 1 presents the segmentation of a synthetic mosaic
with 3 textures selected from the Brodatz database. This ex-
ample shows the effectiveness of the method and its superior-
ity to moving-window based segmentation. Final segmenta-
tions illustrate the robustness of the method to the initializa-
tion and highlight the gain provided by the proposed region-
based approach compared to pixel-level labeling techniques,
which rely on scale or window parameters to compute local
texture features. Results coming from such techniques greatly
depend on the choice of the scale or window parameter. In
fact, great values of this scale parameter produce better esti-
mates of the texture boundaries. However, they can also lead
to the undesirable situation of multiple texture classes within
a common window. In contrast, low values are less likely to
contain multiple classes. However, the limited coverage may
produce misleading features. The proposed region-based ap-
proach intrinsically circumvents these issues since the pro-
posed energy criterion aims at forming homogeneous texture
regions with smooth boundaries.

- E —zall 4
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(a) Initialization 10x10 window

(b) Final segmentation

.
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(b) Final segmentation

0 50 100 140

(a) Initialization 40x40 window

Fig. 1. Segmentation with an initialization with moving-
window based segmentation using small and large windows

Figure 2 presents segmentation maps for a synthetic mo-
saic with 6 textures selected from the Brodatz database and
for a real sidescan sonar image. The sonar image is com-
posed of three textures: mud, sand and sand ripples. Let us
stress that sand and ripple textures are partially mixed in the
latter example. In both cases, we successfully recover the
boundaries of the texture regions. In particular, in the second
example, we retrieve relevant boundaries between the sand
and ripple regions.

Figure 3 refers to examples of unsupervised classification
for a 5-class Brodatz synthetic image (on the left) and a real
sonar textured image (on the right). As in the supervised case,
we accurately recover the region boundaries as well as the
associated texture models.

a0 50 00 120 140 160

50 100 150 200 250

Fig. 2. Supervised segmentation.

Fig. 3. Unsupervised segmentation.
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