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ABSTRACT
This paper presents a contextual algorithm for the computa-

tion of Baum’s forward and backward probabilities, which are

intensively used in the framework of Hidden Markov Chain

(HMC) models. The method differs from the original al-

gorithm since it only takes into account a neighborhood of

limited length and not all the chain for computations. Com-

parative experiments with respect to the neighborhood size

have been conducted on both Markovian (simulations) and

not Markovian (images) data, by mean of supervised and un-

supervised classifications.

1. INTRODUCTION

In unsupervised image segmentation, the HMC model has

shown to be very performing in a number of different con-

texts, such as in medical and satellite imaging. Before any

processing, the bi-dimensional lattice of pixels is first con-

verted into a 1D sequence of observations (y) through the

Hilbert-Peano scan [1]. Then parameters estimation and Ba-

yesian restoration techniques are applied to obtain a restored

sequence of classes (x), which is finally converted back to a

class image by inverting the scan [2].

For image segmentation, the HMC model structure can be

considered somewhat artificial compared to the 2D structure

of a Hidden Markov Random Field (HMRF), which is bet-

ter adapted to model the relationship between adjacent pixels

in an image. However, the computation time needed to esti-

mate parameters is considerable and even prohibitive with this

approach, even if mean field like approximations of HMRF

make parameter estimation tractable without use of simula-

tions [3]. Recently, both Markovian models have been com-

pared in the context of satellite image segmentation and it ap-

pears that the HMC model constitutes a fast and robust alter-

native to the HMRF one since it can compete with in terms of

estimation and classification accuracy [4].

All probabilities needed to estimate the HMC parameters

in an unsupervised context can be expressed in term of the so-

called Baum’s forward and backward (F&B) probabilities [5].

Nevertheless, the memory requirement needed to save those

probabilities can become prohibitive for large-size images or

when the number of classes is high. This is for example the

case with some high resolution satellite images whose size

can exceed 10000 × 10000 pixels, with up to 8/10 thematic

classes. We propose here to study a contextual estimation

of Baum’s probabilities that takes into account a neighbor-

hood of limited extent, unlike the original algorithm where the

neighborhood is given by all the chain. This extension allows

to understand the impact of far away data in the global HMC

model. With this contextual estimation, we will be able to

latter propose a bootstrap sub-sampling strategy for the HMC

model, reducing both computing time and memory require-

ment.

The paper is organized as follows. Section 2 describes

the methodological issues involved in the method, after ba-

sic facts about HMC were recalled. Section 3 and 4 present

results from supervised and unsupervised classifications of

noisy simulated Markov chain and image. Finally, conclusion

and perspectives are drawn in section 5.

2. METHODOLOGY

2.1. Problem definition

Let X = (X1, · · · , XN ) and Y = (Y1, · · · , YN ) be the

vectors of random variables corresponding to the (hidden)

state sequence and the observed sequence. Each Xn takes

its values in a finite set Ω = {1, · · · ,K} of classes and each

Yn takes its values in the set of real numbers R. Realiza-

tions of such processes will be denoted by lower-case letters

x = (x1, · · · , xN ) and y = (y1, · · · , yN ).
In this work, X is supposed to be a stationary Markov

chain, i.e. the probabilities of the C matrix

ci,j = P (Xn = i,Xn+1 = j) , ∀i, j ∈ Ω (1)

are independent of n. The distribution of X is consequently
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Fig. 1. Neighborhood used to estimate αn and βn.

determined by the initial distribution, denoted by πi,

πi = P (X1 = i) =
K∑

l=1

ci,l

and the transition matrix A whose entries are given by:

ai,j = P (Xn+1 = j |Xn = i ) =
ci,j

πi
.

Under usual assumptions, i.e. (i) random variables Y1,

· · · , YN are conditionally independent with respect to X and

(ii) the distribution of each Yn conditionally on X is equal to

its distribution conditional on Xn, we can write:

P (X,Y) = πx1 fx1(y1)
N∏

n=2

axn−1,xn
fxn

(yn),

where fxn
(yn) = P (Yn = yn |Xn = xn ).

One reason for the success of HMC models comes from

the so-called Baum’s F&B probabilities [5], revised by P. De-

vijver in [6] to solve numerical problems that arise in their

computation:

αn(i) = P (Xn = i |Y1 �→n = y1 �→n ) ,

βn(i) =
P (Yn+1 �→N = yn+1 �→N |Xn = i )

P (Yn+1 �→N = yn+1 �→N |Y1 �→n = y1 �→n )
,

where P (Ya�→b) = P (Ya, · · · , Yb). The recursion algorithm

is given by:

• forward initialization (1 ≤ i ≤ K):

α1(i) =
πi fi(y1)∑K

j=1 πj fj(y1)
(2)

• forward induction (1 ≤ i ≤ K, n = 2, · · · , N ):

αn(i) =
fi(yn)

∑K
j=1 αn−1(j) aj,i∑K

l=1 fl(yn)
∑K

j=1 αn−1(j) aj,l

(3)

• backward initialization (1 ≤ i ≤ K):

βN (i) = 1 (4)

• backward induction (1 ≤ i ≤ K, n = N − 1, · · · , 1):

βn(i) =

∑K
j=1 fj(yn+1) βn+1(j) ai,j∑K

l=1 fl(yn+1)
∑K

j=1 αn(j) aj,l

(5)

2.2. The proposed contextual estimation

It can be observed that both F&B probabilities at index n de-

pend on previous and next probabilities, illustrating the global

behavior of Markov modeling. On the other hand, one can

ask for the real numerical influence of the neighborhood away

from n on the values of αn and βn. Hence, it is well-known

that, in a Markov chain, the correlation between two states de-

creases exponentially with the distance between them. To try

to answer the question, we propose to consider the following

algorithm which gives an estimation of F&B probabilities.

For index n, we consider a local neighborhood delimited

by range [n − λ;n + λ] (see Fig. 1), and apply the F&B re-

cursion algorithm (Eq. (2) to (5)) on X̃1 �→2λ+1 = Xn−λ �→n+λ

and Ỹ1 �→2λ+1 = Yn−λ�→n+λ processes. We then only keep

values αn(i) = α̃λ+1(i) and βn(i) = β̃λ+1(i), discarding

α̃�(i) and β̃�(i) for 1 ≤ i ≤ K and ∀l ∈ [1, 2λ + 1] , l �=
λ + 1. This algorithm is repeated for all n from 1 to N , with

special care on the firsts and lasts indices. Hence, we obtain

a contextual estimation of F&B probabilities and the influ-

ence of the neighborhood on the recursion can be examined

through the value of λ > 0. As λ increases, we can expect to

get the approximative algorithm approaches the original one.

3. TESTS ON SIMULATED MARKOV CHAINS

In this section, we compare the algorithm proposed above

with the original one, according to λ. The comparison is per-

formed by mean of the classification error rate (the number

of wrong classified samples over the total number of sam-

ples), after supervised and unsupervised restorations of noisy

simulated Markov chains generated according to: (i) the sim-

ulation of a K = 2 classes stationary Markov chain x̂ with

N = 104 samples, from a given matrix C (Eq. (1)); (ii) the

degradation of x̂ by adding a Gaussian white noises on each

class, defined by N (µ1, σ1) and N (µ2, σ2) to get ŷ.

3.1. MPM restoration with true parameters

For supervised classification, we chose to restore the obser-

vations by mean of the Bayesian MPM (Maximal Posterior

Marginal) decision rule since it can be directly expressed in

terms of F&B probabilities:

[x̂MPM(y) = (x̂1, · · · , x̂N )] ⇔[
x̂n = arg max

xn∈Ω
P (Xn = xn |Y ), 1 ≤ n ≤ N

]
. (6)

Hence, it becomes possible to measure the influence of

λ on classification accuracy, by computing the error rate be-

tween x̂ and x̂MPM, and comparing it with the error rate ob-

tained from the original algorithm.

From ŷ and all model parameters used to generate it,

C =
(

0.48 0.02
0.02 0.48

)
, N (87, 14) , N (113, 20) ,
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MPM classification error rates (with true parameters)

Fig. 2. MPM error rates obtained with λ = 1, · · · , 12 (mean

values of 25 tests). The horizontal line shows the rate ob-

tained with the original algorithm (τ = 4.42%).
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MAP classification error rates (with ICE estimated parameters)

Fig. 3. MAP error rates, after ICE-based parameters estima-

tion (mean values of 25 tests). The τ = 4.75% line corre-

sponds to the original algorithm rate.

we computed αn and βn for all 1 ≤ n ≤ N , according to

the procedure described in Sec. 2.2, for λ ranging from 1

to 12. We then applied Eq. (6) to get the restored sequence

x̂MPM. As shown in Fig. 2, the error rate decreases from

τ1 = 10.35% to τ12 = 4.48%. From λ ≥ 6, the rates are

very close to τ = 4.42% obtained with the original recursion

algorithm, showing that the influence of the neighborhood is

spatially limited.

3.2. MAP restoration with estimated parameters

We can now ask for the influence of λ on the estimation of

model parameters, in the context of unsupervised classifica-

tion. To that goal, we decided to achieve MAP (Maximum A

Posteriori) restoration

x̂MAP = arg max
x∈ΩN

P (X = x|Y = y) ,

(a) Original image (b) Noisy image

Fig. 4. Before processing, image (b) is transformed into a 1D

sequence by mean of the Hilbert-Peano scan.

(a) λ = 2,

τ = 16.59%
(a) λ = 9,

τ = 7.60%
(a) λ = 18,

τ = 5.92%

Fig. 5. MPM segmented images for different values of λ.

using Viterbi’s algorithm. Indeed, F&B probabilities do not

play a direct role in MAP restoration (unlike MPM), but only

by the way parameters are estimated. Precisely, parameters

estimation is done by the ICE (Iterative Condition al Estima-

tion) procedure [7], which is an alternative to EM (Estimation-

Maximisation) and SEM (Stochastic EM) algorithms.

Results are drawn on Fig. 3, after 50 ICE iterations and an

initial estimation computed from a Kmeans-based segmenta-

tion. It appears that λ has nearly no influence in parameters

estimation, since the error rate is nearly constant. These re-

sults have been confirmed by other experiments (not reported

here) where we have modified both C matrix and Gaussian

noise parameters, making the mixture more difficult to esti-

mate. Next section presents experiments with noisy simulated

images, in order to determine if the same behavior can be ob-

served when the data do not follow a Markov chain.

4. TESTS ON NOISY SIMULATED IMAGES

To pursue the analysis of the algorithm, we have segmented

the noisy simulated image in Fig. 4(b), generated from the (a)

image by adding a Gaussian white noise on each class. The

graphs in Fig. 6 report the error rates obtained by using unsu-

pervised MPM and MAP restorations, after 50 ICE iterations.

We can observe the same behavior as in the case of Markov

chains (section 3), but with these additional comments:

(1) In the MPM restoration case, the size of the neighbor-

hood needed to get an error rate close to the one given by

the original algorithm (τ = 6.04%) is much larger than for

simulated data in previous section (λ � 16 vs λ � 6). For il-

lustration purposes, Fig. 5 shows three MPM-segmented im-
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MAP classification error rates (with ICE estimated parameters)

(b) MAP

Fig. 6. MPM and MAP error rates after ICE-based parameters estimation. The rates computed from the original algorithm are

respectively given by τ = 6.04% and τ = 7.34%. Several MPM based segmentations are shown in Fig. 5.

ages obtained by constructing back the image using an invert

Peano scan.

(2) The error rate given by MAP restoration is always bet-

ter than the rate obtained with the orignal algorithm (τ =
7.34%). This can be understood by recalling that the Peano

scan of the target image is not Markovian and the approxi-

mative algorithm, by its contextual approach, can better take

into account the difference to the underlying model (Marko-

vian assumption) than the original algorithm. Nevertheless,

as expected, the rates tend to be equal when λ increases.

5. CONCLUSION

This work describes an algorithm for the contextual estima-

tion of forward and backward probabilities. It consists in tak-

ing into account only a neighborhood of limited extent in the

computation of probabilities, and not all the chain as it is done

in the original algorithm. Hence, we break the global nature

of the HMC model, while preserving that it is still governed

by only one set of parameters (unlike contextual models).

We have conducted a series of experiments on the size of

the neighborhood, from what we can make the three following

conclusions: (i) The approximation of F&B probabilities has

a small impact on parameters estimation (a neighborhood of

only one sample seems enough in our simulations). However,

the MPM criterion seems much more sensitive than the MAP

one. (ii) The computation is valid for both Markovian and

not Markovian data, i.e. the algorithm tends to have the same

behavior than the original algorithm when λ increases. (iii)

The optimal size of the neighborhood depends on data.

It is worth noting that such an algorithm results in an in-

crease of computational time (which is proportional to λ), and

has no other interest than to analyse the role of the neighbor-

hood in an HMC context. Nevertheless, this algorithm will

allow to propose in a near futur a data-driven bootstrap sub-

sampling strategy for HMC, which will result in a reduction

of computational time and memory requirement. Hence, we

will be able to work on large images such as those encoun-

tered in remote sensing imagery.
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