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ABSTRACT 

This paper presents a novel texture segmentation method 
using Bayesian estimation and SOM (self organizing feature 
map). Multi-scale wavelet coefficients are used as input for 
SOM, and likelihood probabilities for observations are 
obtained from trained SOMs. Texture segmentation is 
performed by the likelihood probability from trained SOMs 
and ML (maximum likelihood) classification. The result of 
texture segmentation is improved using contextual 
information. The proposed segmentation method performed 
better than segmentation method using HMT (hidden 
Markov trees) model. In addition, texture segmentation 
results by SOM and multi-scale Bayesian image 
segmentation technique called HMTseg also performed 
better than those by HMT and HMTseg. 

1. INTRODUCTION 

The goal of texture segmentation is to divide an image into 
homogeneous textured regions and identify the boundaries 
between regions. Texture segmentation can be categorized 
as supervised and unsupervised segmentation. In supervised 
segmentation problems, the number of textures and their 
associated model parameters are known, or estimated before 
segmentation. In unsupervised segmentation problems, such 
knowledge is not available before segmentation. Thus 
segmentation methods are determined according to each 
segmentation problem.  

Another factor that influences the choice of 
segmentation method is the texture description or feature 
extraction method [2]. Of all methods for the texture feature 
extraction, signal processing methods are attractive due to 
their simplicity and supported by psychophysical research 
which has given evidence that the human brain does a 
frequency analysis of the image [1]. Fourier or wavelet 
transform [4] can be used to extract texture image features. 
The resulting transformed features in multi-scale are 
efficient for texture segmentation [4]. Therefore, the HMT 
model in multi-scale wavelet-domain was used for texture 
segmentation [4]. Kohonen neural networks [3], or fuzzy c-
means, with some features extracted from wavelet transform, 

were also used for texture segmentation. Neural networks 
can represent any distribution of inputs without complicated 
modeling methods [5]. SOM can be trained in unsupervised 
training mode [8]. A trained SOM forms prototypes for 
training data [5-6], [8].  

In this paper, we propose a novel method of supervised 
texture segmentation using SOM in a multi-scale wavelet 
domain and a multi-scale Bayesian image segmentation 
technique called HMTseg. Firstly, a method for obtaining 
the likelihood probability of observations from SOM is 
proposed. Texture segmentation is performed by using 
likelihood from SOM and ML classification. Secondly, a 
method using contextual information is proposed for 
improving texture segmentation by SOM. Finally, the 
proposed method uses HMTseg to fuse the multi-scale 
segmentations and to improve texture segmentation at the 
finest scale. 

2. THE LIKELIHOOD ESTIMATION FROM SOM 

In this section, we explain the method to estimate 
probability density from training samples or prototypes [5]. 
Then, from this estimation method we propose a method for 
estimating a distribution from SOM. 

2.1. Statistical characteristics of SOM 

SOM learns by self-organizing and competition [8]. SOM 
has one layer, which is called the competitive layer, and 
neuron nodes in that layer are arranged in a lattice. The 
weight vectors are connected to the neuron nodes in the 
competitive layer and have identical dimensions as the input 
vectors. When an input vector is fed into SOM, the neuron 
whose weight vector is closest to the input vector according 
to some measure (e.g. Euclidean distance) is called the 
winning neuron for that input vector. 

In SOM training, if a training vector G is fed into SOM, 
the weight vectors, which are connected to a winning 
neuron node i* and all neuron nodes within a certain 
neighborhood Ni*(d) of the wining neuron, are updated 

using the Kohonen rule [8]. Here, Ni* (d) = { j, di*j ≤ d }, and 
di*j is the distance between the winning neuron node i* and 
the neuron node j in the competitive layer (the distance 
between positions of neuron nodes on the lattice). Thus, 
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when a vector G is presented, the weights of the wining 
neuron and its close neighbors move toward G.
Consequently, after many presentations, weight vectors of 
neighboring neurons will be close to each other in a vector 
space. SOM allocates many neighboring neurons when 
recognizing a region which contains many training vectors 
in the training vector space, and relatively few neurons 
when recognizing a region which contains few training 
vectors. Thus, SOMs learn both the distribution and 
topology of the input vectors they are trained on. Then the 
weight vectors of the neurons in the layer become 
prototypes of the training vectors. SOM projects high 
dimensional training vectors on nodes which are arranged in 
a two-dimensional lattice. 

2.2. Estimation of probability density from prototypes [5] 

The probability P that vector x will fall in a region R is 
given by 

′′=
R

dpP xx )(  . (1)

Thus P is an averaged version of the density function p(x),

and we can estimate the smoothed value of p(x) by 
estimating the probability P. Suppose that n samples, 

x1,…,xn, are drawn independently and identically distributed 

according to a probability law, p(x). The probability that k
of these n fall in R is given by the ratio k/n which will be a 
good estimate for the probability P. If we now assume that 

p(x) is continuous and that the region R is so small that p(x)
does not vary appreciably within it, we can write  
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R
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where V is the volume enclosed by R. Combining Eqs. 1 and 

2, we arrive at the following obvious estimate for p(x), 
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If we want to obtain p(x) rather than just an averaged 
version of it, we must be prepared to let V approach zero. 
From a practical standpoint, the number of samples is 
always limited. Thus, the volume V cannot be allowed to 

become arbitrarily small. To estimate p(x) from n training 

samples or prototypes we can center a cell about x and let it 
grow until it captures kn samples, where kn is some specified 
function of n. These samples are the kn nearest-neighbors of 
x. If the density is high near x, the cell will be relatively 
small (good resolution). If the density is low, the cell will 

grow large. In either case, we can take the estimation pn(x)

of p(x) for n training samples as follows: 
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where Vn is the volume of the cell which contains kn samples. 

If the estimation pn(x) is to converge to density p(x), three 
conditions appear to be required as follows:

0/,,0 limlimlim =∞==
→∞→∞→∞

nkkV n
n

n
n

n
n

 . (5)

In other words, the smaller the region R (the smaller Vn

becomes), in which the number of kn nearest-neighbors of x
are sufficiently many, the more accurate the pn(x) becomes. 

2.3. The likelihood estimation from SOM 

We propose a method for estimating likelihood probability 
for an input vector x using SOM, which had been trained by 
training vectors of class c, as follows. 
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where, c ∈ {1,2,…,Nc} is a class index, N is the number of 
all neurons in SOM, VN is a circle with the radius rc,K(x).

The radius rc,K(x) is the longest distance of all of the 

distances between input x and the weights of K neighboring 

neurons that are neighbors of winning neuron for the input x
on the two-dimensional lattice of the competitive layer [see 
Fig. 1]. Thus, if the value of K is fixed, then rc,K(x) can be 
computed.  

Estimating the likelihood probability more exactly from 
SOM, a proper K exists depending on the size of SOM and 
the amount of training data. Increasing the value of K results 

in an increment of the region R (πrc,K(x)2) when estimating 
the distribution of training data. The smaller the amount of 

training data, the larger the region R (πrc,K(x)2) grows 
according to increasing value of K. When the amount of 
training data is abundant, increasing the value of K
improves the reliability of the estimation of the distribution 
of training data, and decreases the influence of noise. But, 
when there is few training data, increasing the value of K
degrades the precision of the estimation of the distribution 
(Refer to Eqs. 3, 4, and 5). In this study, the values of K for 
SOMs are searched by experiments, and then the value of K
for each SOM is fixed. 

3. TEXTURE SEGMENTATION USING SOM 

For texture segmentation we propose to use likelihood 
probability by SOM in multi-scale wavelet domain. The 
multi-level Haar wavelet transform forms a pyramid 
structure through all scales. Haar wavelet transforms of 
three levels are shown in Fig. 2-(a). As can be seen, the 
coarse-scale coefficient wJ-3 corresponds to four coefficients 
in the next finer scale and the dependency of these 
coefficients across scales has a quad-tree structure. The 
multi-scale wavelet coefficients, which analyze a common 
sub-region of an image, have persistence across the scale. 
The dependency between these coefficients can be 
represented as the dependency between parent and child 
nodes of a wavelet quad-tree [see Fig. 2-(b)]. In Fig. 2-(b), a 

            

Fig. 1. Elements of K neighboring neurons on the two-
dimensional lattice of neurons; left: when K=1; right: when K=5. 
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black node represents a wavelet coefficient, and Ti is a sub-
tree rooted at node i. In this paper, we will often drop the 
scale (J, J-1, …) and the direction (LH, HL, HH), if they are 
not confused. To estimate likelihood in multi-scale, the 
proposed system has one SOM for each wavelet scale, and 
each texture class. 

The input vector of SOM was determined by 
considering the dependency of the wavelet coefficients 

across the scale. The input vector gi of SOM is defined as 
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i
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HL
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Here, the gi is for the region of the sub-image analyzed by 
sub-tree Ti [see Fig. 2-(b)]. The sub-tress {Ti

LH, Ti
LH, Ti

LH}
rooted at node i in the three wavelet sub-band quad-trees 
contain the wavelet coefficients analyzing a common sub-
region of an image. Ii is the intensity of the pixels of the 
sub-image analyzed by node i.

The classification of an input vector gi in j’th wavelet 
scale is derived as follows: 
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where )(, i

j

Kcr g  is a distance computed by using Eq. 6 from 

SOM of scale j for class c. In this study, the Euclidean 
distance is used as a distance measure. The multi-scale 
texture segments are obtained by using Eq. 8.  

If the contextual information of an image is used to 
classify the texture for one of the nodes of the wavelet 
quad-tree, then the multi-scale texture segmentations have 
been greatly improved. The multi-scale texture segments 
can be obtained by using contextual information as follows.  
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where Di ={gi, DNi, gρ(i), DNρ(i)} is an observation that 
considers the context of node i of the wavelet quad-tree; 

DNρ(i) ≡{gNρ(i),1, gNρ(i),2,…, gNρ(i),8} is an observation on the eight 

neighbors of the parent node ρ(i) of node i;

DNi≡{gNi,1,gNi,2,…,gNi,8}is an observation on the eight 
neighbors of node i; and ci is the class for node i of the 
wavelet quad-tree. If we assume that the wavelet 
coefficients in one scale are independent, Eq. 9 is rewritten 
as follows: 
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Texture segmentations in multi-scale have 
compromises between reliability and minuteness according 
to scale. Segmentation in coarse scale is accurate for large, 
homogeneous regions but poor along the boundaries 
between regions. Segmentation in fine scale is accurate near 
the boundaries between regions but has poor classification 
reliability due to the paucity of statistical information. A 
study modeled the distribution of the multi-scale wavelet 
coefficients in HMT, and performed texture segmentations 
by using HMT in multi-scale wavelet domain, and showed 
that image segmentation in the finest scale is improved by 
using the HMTseg algorithm that fuses image 
segmentations in multi-scale by HMT [4]. Therefore, to fuse 
multi-scale texture segments, we use the HMTseg algorithm. 
The HMTseg algorithm fuses the multi-scale segmentation 
one by one from coarse to fine scale and then finally 
improves texture segmentation at the finest scale. 

4. EXPERIMENTS AND RESULTS 

In this paper, 16 Brodatz textures are used in the 

experiments. From each 512×512 Brodatz texture image, we 

randomly picked ten (overlapping) 64×64 blocks. Then the 
multi-level wavelet transform (3 levels) of those blocks 
were used as training data. Neuron nodes in the competitive 

layer of SOM are arranged in a 7×7 planar square lattice. 

The image of scale j has 2j × 2j pixels (If an image has 64 ×
64 pixels, then the image has scale j = 6.). Therefore, when 

the full resolution image has 64 × 64 pixels, SOMs of scale j

have (((46-j - 4) / 3 + 1) × 2 + ((47-j - 4) / 3 + 1)) input nodes 
(Refer Eq. 7.). Euclidean distance was used to measure the 
distance between an input vector and the weight vector of a 
neuron. Weights of SOMs are updated by using the 
MATLAB neural network toolbox [6] with the earning rate 
which is decreasing 0.9 to 0.1 for 100 iterations (The 
neighboring distance is also decreasing maximum to 1 for 
100 iterations). The parameters of HMT were estimated 
using EM algorithm (The threshold value 10-7 is used to 
determine the model convergence) with an intelligent 
parameter initialization [7]. The test images for the 
experiments are shown in figure 3. 

A proper K in SOM will result in good segmentation 
performance. As shown on figure 4-(a) and 4-(b), SOM 
with K=5 presents good performance in scale j=6, and SOM 
with K=1 presents good performance in scales j=3, 4, and 5 
(In figure 4, scale j =6 is finer than scale j =3.). The reason 

   
(a)                                                (b)

Fig. 3. (a) Test texture images ; (b) ideal texture segmentations. 
    

TiTi

(a)                                                   (b) 

Fig. 2. (a) The Harr wavelet transform and the quad-tree structure 
of the wavelet coefficients; (b) The quad-tree structure of the 
wavelet coefficients in a wavelet sub-band and sub-tree Ti rooted 
at node i and its elements. 
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for these results is because the amount of training data is 
more abundant for the fine scales (especially, for scale j=6)
than for the coarse scales and segmentation for the fine 
scales is more sensitive to noise. Therefore, the 
segmentation performance by SOM with K=5 is excellent at 
the finest scale j=6. But, for the coarse scales which had less 
training data, increasing the value of K reduces the 
reliability of the likelihood estimation. Thus, SOMs with 
different values of K according to each scale have good 
texture segmentation performance. Texture segmentation 
results by SOM with different values of K according to each 
scale are shown in figure 4-(c) (The multi-scale 
segmentation results by SOM with K=1, 1, 1, and 5 
according to the scale, j=3, 4, 5, and 6). 

Segmentation results for other test images are in figure 
5. The figure 5 shows texture segmentation results by each 
segmentation method and HMTseg only in the final pixel 
domain (scale j =6). Under the picture of each segmentation 
result, the error rate between the ideal segmentation (Fig. 3) 
and the resulting segmentation (Fig. 5) is given. The error 
rate is the rate of the number of misclassified pixels to the 
total number of pixels in an image. Let’s consider figure 5-
(a) and 5-(b) (the test image contains 4 texture classes). 
SOMs with using the proposed methods perform better than 
HMT except for SOM that uses K =1 for all of the scales. 
However, figure 5-(c) indicates that SOM using K values 
that differed according to each scale did not perform as well 
as HMT. It seems that 7×7-sized SOM is more sensitive to 
noise than the Gaussian mixture model at the finest scale 
(scale j =6) if the number of texture classes increases. 
However, when SOM uses contexts to reduce the influence 
of noise, it performs better than HMT. Comparing the 
second and third columns of figure 5 reveals that 
segmentation by SOM that uses proper values of K differing 
according to each scale is much better than SOM that uses 
K=1 for all of the scales 

5. CONCLUSION 

We proposed a novel method of supervised texture 
segmentation using SOM in a multi-scale wavelet domain 

and a multi-scale Bayesian image segmentation technique. 
A method for obtaining the likelihood probability of 
observations from SOM was proposed. To estimate the 
likelihood more exactly from SOM, the values of K for each 
SOM were searched by experiments. The performance of 
texture segmentation improved when K was set to different 
values for SOMs according to each scale or according to the 
amount of training data. We also propose a likelihood 
estimation method that used contextual information. This 
method improved texture segmentation. The results of 
texture segmentation by the proposed methods are much 
better than those by HMT and HMTseg. 
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Scale    j=3        j=4         j=5        j=6
(a)

Scale    j=3        j=4         j=5        j=6
(b)  

Scale    j=3        j=4         j=5        j=6
(c)

Fig. 4. Multi-scale texture segmentations by each system before 
applying HMTseg; (a) by SOM with K=1; (b) by SOM, K=5; (c) 
by SOM, K values set according to each scale (K=1, 1, 1, and 5 
from left to right of figures). 

6.99%  13.99%   6.65%     3.22% 
(a)

19.26%  45.81%  14.95%    6.43% 
(b) 

9.89%  44.82%  15.36%    6.27% 
(c)

Fig. 5. Texture segmentation results and error rates by each 
segmentation method and HMTseg; (a) first column: by HMT 
and HMTseg [4]; second column: by SOM, K =1 and HMTseg; 
third column: by SOM, K =1,1,1, and 5 from the coarsest scale to 
the finest scale, and HMTseg; fourth column: by SOM, context 
Di ={gi, DNi, gρ(i), DNρ(i)} and using K=1, 1, 1, and 5, and 
HMTseg; (b), (C) by the same method as (a). 
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