
MUMFORD-SHAH MODEL WITH FAST ALGORITHM ON LATTICE

Lu YU∗+, Qiao WANG∗, Lenan WU∗, and Jun XIE++

Department of Radio Engineering, Southeast University, Nanjing, China∗

Institute of Communications Engineering, PLA University of Science and Technology, Nanjing, China+

Institute of Command Automation, PLA University of Science and Technology, Nanjing, China++

ABSTRACT

Mumford-Shah piecewise smooth functional is a variational PDE

model widely used in image segmentation and smoothing. An anal-

ogous discrete model which models image as an MRF has also been

built. In this paper, we propose another discrete Mumford-Shah

piecewise smooth model on lattice from a different perspective. We

present a discrete objective functional, as well as the method to find

the solution. Only two simple and deterministic optimization tech-

niques, that is, derivation and greedy algorithm are used in the model

to seek the solution. Compared with traditional continuous model,

the model in this paper is much simpler and the approach is much

easier and faster.

1. INTRODUCTION

Mumford-Shah piecewise smooth model introduced by Mumford

and Shah [1] in 1989 is a widely used variational PDE model for im-

age smoothing and segmentation. The model is often implemented

by level set approach [2]. The Mumford-Shah functional in level set

approach is

F (u+, u−, φ) =

��

Ω

(u+ − u0)
2H(φ)dχ

+

��

Ω

(u− − u0)
2(1 − H(φ))dχ + µ

��

Ω

|∇u+|2H(φ)dχ

+µ

��

Ω

|∇u−|2(1 − H(φ))dχ + ν

��

Ω

|∇H(φ)|dχ,

(1)

where u0 denotes the image on Ω to be segmented and smoothed, Ω
is partitioned by a surface φ whose zero level set is Γ into two areas:

φ > 0 and φ < 0 on which u+ and u− are defined respectively.

u+ and u− are the smooth images approximating u0. µ and ν are

positive parameters. H(.) is the Heavyside function.

The following Euler-Lagrange functions and gradient flow are

the results in [2]:

u+ − u0 = µ�u+
on φ > 0,

∂u+

∂−→n = 0 on φ = 0,

u− − u0 = µ�u−
on φ < 0,

∂u−

∂−→n = 0 on φ = 0,

(2)

where ∂/∂−→n denotes the partial derivative in the normal direction
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−→n on the boundary φ = 0.

∂φ

∂t
= δ(φ)[ν∇ · ( ∇φ

|∇φ| ) − (u+ − u0)
2

+(u− − u0)
2 − µ|∇u+|2 + µ|∇u−|2],

(3)

where δ(·) is the Dirac function.

Mumford-Shah functional has nice formulations based on per-

fect theory of analysis. However, there are many topics in imple-

mentation of the model, such as how to handle Neumann boundary

condition in (2), how to choose the difference schemes in order to

capture the viscosity solution, how to extend u+ on φ < 0 and u−

on φ > 0, how to reinitialize φ in order to keep the surface smooth,

etc. Therefore, it is not easy to carry out Mumford-Shah piecewise

smooth model.

The difficulties in implementation are mainly caused by the fact

that we regard images as functions on continuous domain while dig-

ital images are defined on lattice. Why not establish model on dis-

crete space directly? In fact, a discrete Mumford-Shah piecewise

smooth model which models image as an MRF has been proposed

in [3] and some stochastic optimization techniques were used to find

solution. However, that model is complex and the approaches are

time costly.

In this paper, we propose another discrete Mumford-Shah model

on lattice from a different perspective. Instead of modeling image as

an MRF, we model image as a deterministic function on lattice and

choose a two-valued surface function ψ with values +1 and -1 only.

The idea of discrete level set function was built in [4] and [5]. Both

papers aimed at accelerating the evolution of level set while we focus

on providing an entirely discrete Mumford-Shah model on lattice.

The method in [5] was to update values of the level set function ac-

cording to the sign of velocity. While we adopt a simple optimization

technique known as greedy algorithm to evolve the surface. That is,

change the sign of ψ if such operation can decrease the energy. This

evolution policy is different from [5] since computation of veloc-

ity field is unnecessary. And for Mumford-Shah piecewise smooth

model, it takes less time to calculate the change of energy than to

compute velocity field. The same technique is used in [4] to imple-

ment the Chan-Vese segmentation model [6]. The main difference

between this paper and [4] is that we present a discrete energy func-

tional which makes the computation of energy easier. In Mumford-

Shah piecewise smooth model, minimization of the energy includes

searching a piecewise smooth function to approximate the original

image and searching the boundary curve. In our formulation, we

present explicit linear equations to solve the piecewise smooth-like

function instead of PDEs with boundary conditions. Another differ-

ence is that we evolve only boundary points while [4] sweeps every

pixel on the image. Thus we can propose a fast method to accelerate

the procedure of solving the piecewise smooth-like function.
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We’ll first introduce the discrete functional, after that, the ap-

proach to find the optimal solution is proposed, then all the details

of implementation are elaborated. After some experiment results

are illustrated, the comparison on various aspects with traditional

Mumford-Shah model, as well as the two methods in [4] and [5] are

made.

2. MODEL ON LATTICE

We start with the objective functional of the new model on lattice,

including its formulations and the approach to seek solution.

2.1. objective functional on lattice

A digital image defined on a M × N lattice can be represented as

gij , 1 ≤ i ≤ M, 1 ≤ j ≤ N, i, j ∈ Z. In this paper,we translate the

segmentation problem of g into seeking f and ψ on M × N lattice

which minimize

E(f, ψ) =
�

i,j

(fij − gij)
2 + ν
�

ij

�

(p,q)∈Sij

(1 − ψijψpq)

+µ
�

i,j

�

(p,q)∈Sij

(fij − fpq)
2(1 + ψijψpq),

(4)

in which g denotes the digital image to be segmented, f denotes the

piecewise smooth-like image approximating g. Sij denotes the 8-

pixels neighbor around pixel (i, j). The ψ is a two-valued function

with values +1 and -1 only and its evolution can follow motion of

the segmenting curve Γ and handle topological change naturally.

The first term in (4) requires that f approximate g, we call it

fidelity term. The M × N lattice is partitioned by ψ into two areas:

ψ = 1 and ψ = −1. The third term requires that f does not vary

too much within each area. For the pixel (i, j), if its neighbor (p, q)
is in the same area as (i, j), the difference between fij and fpq will

be counted. Otherwise, the difference between the two will not be

counted. That is, no smoothing of f is done across the boundary.

This term is called smoothness term in this paper. Before explaining

the second term, we present a definition frequently used in this paper.

Definition: Let function ψ takes values ±1 on M × N lattice,

we say that pixel (i, j) is a boundary point if there exists (p, q) ∈ Sij

such that ψij �= ψpq .

In traditional Mumford-Shah model, the last term in functional

(1) suggests that Γ, the zero level set of φ, as short as possible. In

discrete model, it is difficult to compute the curve length, so we use

the second term in functional (4) to approximate the curve length.

A similar formulation has been used in [1] to calculate the length of

a piecewise linear curve on lattice, while the choice of 4-neighbors

system in [1] makes the meaning of the formulation is entirely dif-

ferent from ours. Among the neighbors of (i, j), only those whose

ψ values are different from ψij can attribute to the sum. In fact, it

is a weighted sum of all the boundary points on lattice. Experiments

show that it is a good approximation to the curve length and a closed

curve will shrink to a point with this term alone. Although this term

is not the geometric length, we call it length term to correspond to

the last term in traditional Mumford-Shah functional.

Although the functional (4) and the energy function in [3] have

similar forms, there are some underlying differences. First, the lat-

ter works within Bayesian framework, the gray levels and edges in

it are stochastic variables on MRF, while f and ψ in our model are

deterministic functions. Second, the gray levels in [3] vary in a dis-

crete finite set, while the values of f in (4) change continuously. The

continuity of f values leads to our very simple optimization method.

Furthermore, in [3], the segmenting curve might be unclosed, while

in our model, the level set approach ensures the closure of the curve.

2.2. optimization of the functional

For a fixed ψ, optimizing functional (4) over all fmn(1 ≤ m ≤
M, 1 ≤ n ≤ N) can be implemented by setting ∂E

∂fmn
= 0, then

2µ
�

(p,q)∈Smn

(fmn − fpq)(1 + ψpqψmn) + fmn = gmn. (5)

According to (5), at least two linear equation systems each cor-

respond to a connected component of ψ can be generated easily.

And equation systems can be solved by any iterative method, such

as Conjugated Gradient.

For a fixed f , minimizing E(f, ψ) with respect to ψ is solved

by greedy algorithm. That is, for each boundary point (m, n), if

changing sign of ψmn can decrease the energy functional (4), then

do it, otherwise, do nothing.

3. SOME ISSUES OF IMPLEMENTATION

Now we go to the implementation of functional (4).

3.1. what will change when ψmn changes

For every boundary point (m, n) we should test whether total en-

ergy will decrease or not when ψmn alters its sign. Then, what will

change when ψmn changes?

Strictly speaking, when ψmn alters its sign, almost every value

of f on lattice will change because the partition areas ψ = +1 and

ψ = −1 have been modified. Due to time constraint, we can’t solve

equation (5) when every ψmn changes its sign. And in fact, except

fmn, other values of f changes only slightly. So, for ordinary sim-

ple images, it is convenient and feasible for us to assume that other

values of f do not change. To estimate the changed value of fmn,

we write the diffusion equation at (m, n) after ψmn has altered its

sign,

2µ
�

(p,q)∈Smn

(f̂mn − fpq)(1 − ψpqψmn) + f̂mn = gmn. (6)

in which there is only one unknown, f̂mn.

And in functional (4), the items including ψmn or fmn would

be changed correspondingly.

3.2. how to escape from local minimums

Local minimums are often encountered in optimization. In our model,

because approximation to the curve length is not precise enough,

local minimums appear more frequently. For example, for a pixel

(m, n), when L =
�

(p,q)∈Smn
ψmnψpq = 0, changing sign of

ψmn does not affect L, but the actual curve length might change.

In this case, internal force will not take effect, and if external force

happens to be very small, then the evolution might be trapped in a

local minimum because of equivalent length term. To avoid this sort

of local minimums, we modify L to a negative number when L = 0
to enhance the internal force. Experiment results show that with this

policy, the evolution can escape from many local minimums success-

fully.
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3.3. how to eliminate isolated point

The isolated points of ψ are not welcome in evolution, especially

for images contaminated by salt and pepper noise. To eliminate the

isolated points, L =
�

(p,q)∈Smn
ψmnψpq , again plays an impor-

tant role. Note that L = 8 implies ψmn and all its eight neighbors

take the same value (Here we assume that ψmn is not at the edge

of the image. ). In this case, ψmn will become an isolated point

when it changes its sign. Thus we can modify L to a larger positive

number to remain ψ not changing. Analogously, L = −8 means the

pixel (m, n) is an isolated point which should be eliminated, then

we assign L a large negative number to enhance the internal force to

shrink.

3.4. how to test convergence

As we discussed in section 3.2, we assign L a negative number when

L = 0 to escape from local minimums. The side effect is that there

will be some oscillations at the end of evolution. Namely, ψ of a

few points will change from +1 to −1 periodically. This can be

controlled by adding a counter to record the times of changing signs

for each point. A point ψmn is not permitted to change again if its

counter attains a pre-assigned maximum.

3.5. fast method to solve equation systems

The runtime of solving equation systems (5) is the main cost in each

iteration. In this paper, we accelerate the procedure by decreasing

the number of the pixels appearing in (5). In fact, since we only

evolve boundary points, only gray values of the pixels near the curve

would change much while the others change only a a little. So in

most iterations, we only need to solve the equation on a narrow band

along the curve and assume gray values of other pixels unchanged.

Experiments show that it is an effective method.

3.6. algorithm

After discussion of implementation details, we present the entire al-

gorithm.

Algorithm:

step0: Initialize ψ according to the initial curve and set countij =
0, (1 ≤ i ≤ M, 1 ≤ j ≤ N) and maxChange = 10.

step1: Find all the boundary points according to Definition.

step2: Solve equation systems (5) by the fast method described

in section 3.5 to obtain fij , 1 ≤ i ≤ M, 1 ≤ j ≤ N .

step3: For every boundary point (m, n), do:

(1) calculate f̂mn according to equation (6)

(2) calculate

L =
�

(p,q)∈Smn

ψmnψpq

Len =

�����
����

−1 if L = 0,

200 if L = 8,

−200 if L = −8,

L otherwise

(7)

oldE = (fmn − gmn)2 − 2νLen+

2µ
�

(p,q)∈Smn

(fmn − fpq)
2(1 + ψpqψmn) (8)

newE = (f̂mn − gmn)2 + 2νLen+

2µ
�

(p,q)∈Smn

(f̂mn − fpq)
2(1 − ψpqψmn) (9)

where oldE denotes the energy relevant to ψmn and newE denotes

the corresponding energy after changing sign of ψmn.

(3) if newE < oldE and countmn < maxChange, then

change ψmn to −ψmn and fmn to f̂mn and increase countmn by

one.

step4: if some change has made in step3, go to step1; else finish.

4. EXPERIMENT RESULTS

In this section, some experiment results of the model will be illus-

trated. For the convenience of comparison, we choose almost the

same test images and initial curves as those used in [7].

Fig.1 shows the evolution of three simple shapes with internal

force alone. We can see that the evolution of shapes is not symmet-

ric. The process depends on the order in which we visit the bound-

ary points. But the final results are the same, that is, the shapes will

shrink until they disappear.

Fig.2 and Fig.3 show the evolution of curve with different initial

position. The evolution of curve can capture the boundary automat-

ically from arbitrary initial position. However, for different initial

curve, there are some difference in parameter setting which is the

same as in continuous model.

Comparing our results to those in [7], we find there are extrane-

ous curves around the corners in Fig.5 of [7] because its algorithm

has settled on to a local minimum. Because some special procedures

have been adopted as described in section 3.2, we have successfully

escaped from the local minimums as shown in Fig.3.

Fig.4 shows the evolution of curve on an image with four distinct

foreground regions. There are skew stripes in background of the

image which makes the segmentation difficult. Other models such as

Mumford-Shah piecewise constant will be helpless for such image.

The image in Fig.5 has both outer and interior boundaries which

can not be detected with only one curve, so two initial rectangles are

used.

As shown in above results, although the segmenting curve has

a tendency of beeline or polygon in the process of evolution, the

segmentation result is accurate and the final curve is smooth.

(a) (b) (c)

Fig. 1. evolution of some simple shapes with internal force

(a) (b) (c)

Fig. 2. evolution from inside to outside with µ = 2, ν = 150 and

(c) is the result after 37 iterations
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(a) (b) (c)

Fig. 3. evolution from image corner to center with µ = 15, ν = 150
and (c) is the result after 122 iterations

(a) (b) (c)

Fig. 4. evolution with µ = 2, ν = 150 and (c) is the result after 44

itertions

For the convenience of comparison, we have also implemented

traditional Mumford-Shah piecewise model. We use narrow band

evolution method. And in order to reduce the running time, reini-

tialization and extension of velocity are done only on a narrow band.

All experiments are run on a 2.4GHz Intel Pentium4 CPU with 256M

memory and the programs are written in C language together with

Matlab. The comparison is shown in Table1.

Table1: Comparison of segmentation time

Fig Size traditional model discrete model

2 92*92 44.60s 1.90s

3 92*92 143.78s 8.93s

4 91*91 216.3s 3.77s

5 160*140 189.60s 35.37s

5. CONCLUSION

As a conclusion, we will make a comparison on various aspects with

traditional continuous model and the two methods in [4] [5].

As shown in Table2, different from the work in [4] and [5], we

have presented an entirely discrete Mumford-Shah piecewise smooth

model on lattice. There is neither variational method nor PDEs in the

model. The complete analysis and comparisons would be given in a

forthcoming paper.
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(a) (b) (c)

Fig. 5. evolution with µ = 7, ν = 80 and (c) is the result after 140

iterations

Table2

traditional

model

method

in [5]

method

in [4]

discrete

model

energy func-

tional

continuous

func-

tional(1)

continuous

func-

tional(1)

continuous

func-

tional(1)

degraded

func-

tional(4)

smooth

function

Euler-

Lagrange

func-

tion(2)

Euler-

Lagrange

func-

tion(2)

Euler-

Lagrange

func-

tion(2)

linear

func-

tion(5)

calculation

of velocity

yes yes no no

extension of

velocity

yes yes no no

calculation

of changed

energy

no no yes yes

level set

function

continuous discrete discrete discrete

evolution of

level set

evolve by

(3)

policy

based

policy

based

policy

based

reinitialization yes no no no
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