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ABSTRACT
Tracking multiple objects in a video is a demanding task that
is frequently encountered in several systems such as surveil-
lance and motion analysis. Ability to track objects in 3D
requires the use of multiple cameras. While tracking multi-
ple objects using multiples video cameras, establishing corre-
spondence between objects in the various cameras is a non-
trivial task. Specifically, when the targets are dim or are very
far away from the camera, appearance cannot be used in order
to establish this correspondence. Here, we propose a tech-
nique to establish correspondence across cameras using the
motion features extracted from the targets, even when the rel-
ative position of the cameras is unknown. Experimental re-
sults are provided for the problem of tracking multiple bees
in natural flight using two cameras. The reconstructed 3D
flight paths of the bees show some interesting flight patterns.

1. INTRODUCTION

Tracking objects using multiple cameras has the obvious ad-
vantages of 3D reconstruction of tracks and wider field of
view. Moreover, when the cameras are sufficiently far apart
objects that are occluded in one camera might still be visible
in the other cameras. But the use of multiple cameras requires
establishing correspondence across objects seen in the various
views. When there is only one object in view then this corre-
spondence is easily established [1]. But while handling mul-
tiple targets establishing this correspondence is a non-trivial
task. Moreover, if the cameras are sufficiently separated then
the appearance of the same target in the different cameras will
be very different and therefore cannot be used as a cue for es-
tablishing correspondence. Also, when the targets are dim
(very low signal to noise ratio) or are very far away from the
camera (and therefore occupy very few pixels on the image),
then appearance features cannot be used for establishing cor-
respondence. Moreover, if the targets themselves resemble
each other in appearance, as in the case of tracking several
bees, then using appearance information could be ineffective.
Therefore, one needs to develop alternate strategies for estab-
lishing this correspondence.

This work was partially supported by the NSF-ITR Grant 0325119.

Motion information that is implicit in the individual tracks
obtained in the various views is an obvious candidate. But
the tracks in the various camera views are perspective pro-
jections of true 3D tracks and therefore additional constraints
are necessary to match tracks. There have been several at-
tempts to use auxiliary information about motion to constrain
the matching process. [2] uses the constraint that the motion
of the feet of tracked people lies on the ground plane to re-
cover extrinsic camera parameters and then to align and match
tracks obtained in the two views. [3] computes the field of
view of one camera on the field of view of the other cameras,
again by assuming the presence of a ground plane on which
subjects walk, to obtain correspondence across views. In our
approach we use a theorem concerning the projection of 3-D
trajectories of a moving object on to a 2-D image stated origi-
nally in [4] and then later again in [5], to establish correspon-
dence between motion trajectories in the various cameras.

2. OVERVIEW OF THE APPROACH

Images from the different cameras are initially considered
separately. The dynamic background is obtained for each
video sequence during each frame by assuming that the back-
ground variations are much slower than the motion of the
targets. The background subtracted frames are thresholded
to obtain a binary foreground mask. Connected component
analysis is performed on the binary foreground mask to ob-
tain a set of blobs representing the hypothesised position of
the several targets in each frame. A simple blob tracking
model based on the constant velocity model is used to track
the motion of the targets in the video. Thus there are sev-
eral long tracks of targets available for each camera view. We
establish correspondence between the various bee tracks in
the different camera views by exploiting the properties of the
spatio-temporal curvature of these tracks. We note that estab-
lishing this correspondence does not require one to know the
exact relative position of the cameras. Once correspondence
between tracks is established, we can infer the relative posi-
tion of the cameras using these correspondences. We then re-
construct the 3-D trajectories of the targets using the standard
triangulation algorithm. Therefore, the algorithm is distrib-
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uted, in the sense that most processing is performed locally at
each camera. The central processor only takes the tracked tra-
jectories available from each camera and reconstructs the 3-D
flight paths of the bees. The entire algorithm is completely
automatic with no need for any manual inputs. We have suc-
cessfully used this approach for tracking several hundreds of
bees in several videos across two camera views and recon-
structed 3D flight paths of the bees.

3. PRE-PROCESSING AND TRACKING

In this section we will discuss the nature of the pre-processing
and tracking algorithm that we have used. The pre-processing
and tracking algorithm initially runs independently on the video
sequences obtained from the different cameras. We discuss
the application of tracking multiple bees in free flight using
two cameras. The bees are typically 25-50 metres away from
the cameras and therefore are very small dim targets.

Background Subtraction: Since the cameras are static,
the changes in the background are essentially due to changes
in the environment and the illumination conditions. We as-
sume that these changes are much slower (low frequency)
when compared to the changes due to the foreground motion
of the bees. Therefore by adequate and appropriate low-pass
filtering, the slowly varying background can be reliably es-
timated for each frame. For each pixel location in the im-
age we compute the median of a temporal window of about
10-20 frames in order to estimate the background. We have
also noticed that this estimate of the background is fairly in-
sensitive to the width of the temporal window. The back-
ground subtracted image is then thresholded to obtain a binary
foreground mask. This is followed by connected component
analysis to segregate the foreground mask into distinct sepa-
rate blobs. So for each frame now, we have a set of blobs at
various locations which are the hypothesised pixel locations
of the bees. Figure 1 shows some of these binary background
subtracted frames for one of the cameras. As can be seen, the
targets are very small and therefore appearance models are
ineffective for establishing correspondence across views.

Tracking by Data Association: Once the bees in each
frame have been identified as blobs, tracking these blobs through
the video sequence reduces to establishing correspondence
between blobs in consecutive frames. For example, let us as-
sume that we have 5 bee tracks that are active at frame i, and
at frame i+1 the background subtraction has determined that
there are 6 bees in this frame. Tracking is essentially deter-
mining which of these 6 bees corresponds to which of those 5
tracks present in the previous frame and also simultaneously
identifying whether new bees have entered the frame. In or-
der to do this we assume a simple constant velocity model for
the motion of each bee. Using this constant velocity model,
the location of each bee in the next frame can be predicted.
We assume that the probability of the bee being a distance r
(r ≥ 0) pixels from this predicted location is given by an ex-
ponential distribution, i.e., P (d(�p,�a) = r) = 1

σ
exp(−r/σ),

Fig. 1. Sample Background subtracted Frames from a tracked
sequence of a several bees. Each blob represents a bee.

where �p represents the predicted location of the bee and�a rep-
resents the actual location of the bee and d() represents the
distance function. σ is a scale parameter that represents how
close to the constant velocity model the actual bee tracks are.
The choice of an exponential distribution (as opposed to say
gaussian) was motivated by the distribution of the velocity of
the bees in several videos. Computing the maximum likeli-
hood solution for this model is computationally expensive. If
there are N bee tracks and N blobs in the next frame then N !
configurations have to be entertained.

We note that since the probability density function is ex-
ponential in the distance between the predicted and the actual
location of the bee, the blobs that are far away from the pre-
dicted location of the bee are very unlikely to be associated
with this bee track. This observation leads to a computation-
ally efficient algorithm for tracking. We assume that the max-
imum distance between the predicted location of the bee and
the actual location can only be Dmax. This leads to two dis-
tinct advantages. Firstly, it reduces the computational burden.
In practice we have noticed that this results in an order of
magnitude decrease in computational complexity. Secondly,
this leads to a very simple method for identifying new bees
that enter the frame. If a certain blob is not associated with
any of the bee tracks that were present in the previous frame
then it is declared as a new bee that entered the field of view
in the current frame. In effect this means that the probability
of a bee being a distance r (pixels) from its predicted location
is given by,

P (d(�p,�a) = r) =

{
1

S
exp(−r/σ) if 0 ≤ r ≤ Dmax

0 Otherwise

where, S is a scaling to normalize the density.
For each frame among all the various configurations (each

configuration representing a set of correspondences between
current tracks and blobs in the next frame),we pick the config-
uration with the maximum likelihood as the solution. Thus we
have a simple maximum likelihood tracking algorithm based
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Fig. 2. The figures show 5 bees being tracked simultaneously in the two camera views. Each bee track is represented by a
different color. Each dot represents the position of a bee in a particular frame. For simplicity, the images show the positions of
the bees in the last 15 frames only.

on a constant velocity model that tracks the bees individually
in each camera. Figure 2 shows multiple bees being simulta-
neously tracked in two cameras. The position of the bees in
the last 15 frames have been marked in the image. As shown
in this figure, the tracking algorithm produces a set of tracks
one for each bee. Typically most of the bee tracks that we
obtained were greater than 500 frames long.

4. CORRESPONDENCE ACROSS VIEWS

So far we have discussed how tracking can be accomplished
on each of the video sequences separately for each camera.
We are now left with multiple tracks for each camera. The
actual correspondence across camera views (i.e., which track
in view i corresponds to which track in view j) is yet to be
determined. In order to do this we exploit the following theo-
rem from [4] which was recently restated in [5] in the context
of view-invariant activity recognition.

Theorem 1: The continuities and discontinuities in posi-
tion, velocity and acceleration in the 3-D trajectory of a mov-
ing object are preserved in 2-D image trajectories under a
continuous projection function.

The proof of the theorem is given in [4]. Similar to [5] we
consider the affine projection model for the projection of 3-D
trajectories on to 2-D image trajectories. Each track of a bee
is then a spatio-temporal curve given by, �r(t) = [x(t)y(t)t],
where x, y represents the image coordinates in pixel units and
t represents the frame number. The velocity �v(t) and the ac-
celeration �a(t) can be directly computed as,

�v(t) = �r′(t) = [x′(t) y′(t) 1] (1)

�a(t) = �r′′(t) = [x′′(t) y′′(t) 0] (2)

The theorem states that the discontinuities in �r(t), �v(t), �a(t)
are all conserved across the several camera views. Similar to

the approach taken by [5], we identify dynamic instants as
the maxima of the spatio-temporal curvature of these tracks.
These dynamic instants are then conserved across the various
camera views. Therefore we can compute the actual corre-
spondences between tracks across views by matching the dy-
namic instants of the tracks across the views obtained by dif-
ferent cameras. The spatio-temporal curvature of the tracks
κ(t) is given by,

κ(t) =
‖r′(t) × r′′(t)‖

‖r′(t)‖
3

(3)

where, ’×’ represents the vector cross product and ‖ ‖
represents the magnitude of a vector. Figure 3 shows the
spatio-temporal curvature for corresponding tracks in two dif-
ferent camera views. We clearly see that the maxima in the
spatio-temporal curvature (i.e., the dynamic instants ) match.
We use the matching between the dynamic instants to estab-
lish the correspondences of tracks across camera views.

5. RECOVERING 3-D FLIGHT PATHS

Once we have established correspondence of tracks across
views we now have for each frame the coordinates (in pixels)
of each bee in all the cameras. For simplicity, let us consider
the case of two cameras. For any given frame we have the
position of each bee in both the cameras. Therefore, we can
use simple triangulation to recover the 3D location of the bee
for each frame. But in order to do triangulation, we need to
know the internal and external camera calibration parameters.
We assume that the internal calibration parameters, such as
focal length are known. The relative orientation of the cam-
eras can be recovered from the known correspondences as in
[6]. We use a simple non-linear least-squares optimization to
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Fig. 3. The spatio-temporal curvature of corresponding bee
tracks in two camera views. We see that the maxima of the
spatio-temporal curvature match.

minimize the reprojection errors and compute the relative po-
sition and orientation of the cameras. In our set-up we also
knew the distance between the two cameras approximately
and used this to further constrain the optimization. Once we
have recovered the external calibration (relative position and
orientation of the cameras), the 3D reconstruction of flight tra-
jectories is possible via triangulation. Precise camera align-
ment is difficult to achieve in a field study such as this, so the
technique of auto-calibration used here is preferred.

Let us assume that the imaged positions of the bee in cam-
era 1 and 2 are given by (x1, y1) and (x2, y2) respectively.
We know that the straight line passing through the camera
center of camera 1 and the corresponding imaged point (x1, y1)
on its image plane, passes through the 3D coordinates of the
bee. Similarly, the straight line passing through the cam-
era center of camera 2 and the corresponding imaged point
(x2, y2) on its image plane, passes through the 3D coordi-
nates of the bee. Therefore the 3D coordinates of the bee can
be computed as the point of intersection between these two
lines. In practice, these two lines might not actually intersect.
In such cases an approximate solution is obtained by mini-
mizing the reprojection error. Thus we automatically recover
the 3-D coordinates of the bee in each frame.

Figure 4 shows the 3D volumetric reconstruction of the
flight paths of 5 different bees in a video sequence. In practice
the experimenters are interested only in bees that either go all
the way from the feeder to the hive or from the hive to the
feeder. Since the 3D coordinates of the feeder and the hive are
available, we use these 3D coordinates to restrict our attention
to bees that visit both the hive and the feeder. This enables us
to study the nature of the flights of bees between the feeder
and the hive during various conditions.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated a method for automatically
tracking several bees in 3D using multiple cameras. A novel

3

3.5

4

4.5

5

x 10
4

−1000

−500

0

500

1000
500

1000

1500

Depth in mm  (Z)

Fig. 4. 3-D Volumetric reconstruction of the flight path of 5
bees. This video sequence had more than 100 bee flights. We
show only 5 of the reconstructions here for simplicity.

method for establishing correspondence across camera views
by matching the maxima of the spatio-temporal curvature of
the trajectories was presented. Experimental results were pro-
vided for several videos containing more than 10, 000 frames
and consisting of a few hundred bee flights. The algorithm
was used to recover the 3D trajectories of hundreds of freely
flying bees.

7. REFERENCES

[1] Z. Yue, S. Zhou, and R. Chellappa, “Robust two-camera
visual tracking with homography,” ICASSP, 2004.

[2] C. Jaynes, “Multi-view calibration from planar motion
for video surveillance,” Second IEEE Workshop on Visual
Surveillance, pp. 59–66, 1999.

[3] S. Khan, O. Javed, Z. Rasheed, and M. Shah, “Human
tracking in multiple cameras,” International Conference
on Computer Vision, 2001.

[4] J.M. Rubin and W.A. Richards, “Boundaries of visual
motion,” Tech. Rep. AIM-835, Massachussetes Institute
of Technology, Artificial Intelligence Labaratory, 1985.

[5] C. Rao, A. Yilmaz, and M. Shah, “View-invariant repre-
sentation and recognition of actions,” IJCV, 2002.

[6] I. Ihrke, L. Ahrenberg, and M. Magnor, “External camera
calibration for synchronized multi-video systems,” Jour-
nal of WSCG, vol. 12, pp. 537–544, Jan. 2004.

II  672


