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ABSTRACT
In this communication we present an original and general
model for the approximation of vector fields and especially
displacement vector fields. The proposed method uses the
orthonormal multivariate polynomials framework to approx-
imate vector fields as combinations of these particular func-
tions. Then we demonstrate the noise robustness of our model.
And finally we show that the model can efficiently be used
for the recognition of simple face movement in a webcam ac-
quired sequence.

1. INTRODUCTION

There is a wealth of work on movement extraction [1], [2],
[3], [4] and among them comparatives between various meth-
ods [5] and denoising algorithms [3].

But only a few articles deals with movement analysis, a
still recent research subject. Moreover these articles generally
focuses on a very specific application field. For example some
works study only the behavior of the human face or the human
body [6].

Here we present a method which purpose is to character-
ize all types of movement as a linear combination of orthonor-
mal polynomials [7]. Contrary to the articles previously cited
it wants to be most general as possible.

Section 2 details the theoretical part of the developedmethod.
In section 3 we test the noise robustness of the suggested
model. In section 4 we present a simple face movement recog-
nition process based on the proposed vector field model. Fi-
nally we give our conclusions and perspectives in section 5.

2. MODELING OF VECTOR FIELDS

Let U : Ω ⊂ R
2 → R and V : Ω ⊂ R

2 → R respectively
be the maps corresponding to the displacement of the pixel
(x1, x2) ∈ Ω according to the Cartesian axis. A vector field
can therefore be defined by the following map:
F : Ω ∈ R

2 → R
2

(x1, x2) �→ (U(x1, x2),V(x1, x2))

We seek to study movement in an analytical way. For this
reason our method consists in approximating the function F
by a linear combination of polynomials. After having defined
a functional vector space, we use an inner product to create an
orthonormal polynomial basis. Finally we define in this space
operations allowing to obtain the required analytical expres-
sion.

2.1. Definition of the vectorial space

We denote Ep as the vector space of functions from Ω ⊂ R
2

to R which contains the functions U and V . Let φ be the set
of elements of Ep composed of bivariate polynomials defined
as follows:

P (x1, x2) =
IX

i=0

JX
j=0

ai,j (x1)
i (x2)

j (1)

where I ∈ N
+ is the maximal x1 degree, J ∈ N

+ the max-
imal x2 degree and {ai,j}j∈[0;J]

i∈[0;I] ∈ R
I∗J are the coefficients.

The global degree of the polynomial is I+J.

2.2. Definition of an orthonormal base

To get an orthonormal base we provideEp with the inner prod-
uct of two functionals F1 and F2:

〈F1 | F2〉 =

Z
b

a

Z
b

a

F1 F2 ω(x1, x2) dx1dx2 (2)

where ω(x1, x2) is a weighting function that eventually be
chosen according to a given problem. We notice that with
this inner product we can define the distance between two
functions:

‖F1 − F2‖ =
q

〈F1 − F2 | F1 − F2〉 (3)

Providing the vectorial space with the inner product al-
lows to define a polynomial basis B. To normalize this basis,
all its elements {P1, P2, . . . , Pn}must verify 〈Pi | Pj〉 = δij .
Thus we seek to construct a set of orthonormal polynomials
using the Gram-Schmidt’s orthogonalization procedure to get
an orthonormal base.
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This article is limited to the study of Legendre’s polyno-
mials. They are defined by a recursive process:

8>>>>>>><
>>>>>>>:

P0,0 = 1
P1,0 = x1
P0,1 = x2

Pi+1,j =
2i + 1

i + 1
x1 Pi,j − i

i + 1
Pi−1,j

Pi,j+1 =
2j + 1

j + 1
x2 Pi,j − j

j + 1
Pi,j−1

(4)

By definition the weighting function associated with these
polynomials is ω(x1, x2) = 1 and the domain is [−1; 1]. Of
course, before any operation the pixel coordinates of (i, j) ∈
N

+2 of a MxN image must be converted in this domain by
an affine transformation.

The degree of the basis is the higher degree of its polyno-
mials. For example a basis of degree 2 contains six polyno-
mials:

(x2)
0 (x2)

1 (x2)
2

(x1)
0 P0,0 P0,1 P0,2

(x1)
1 P1,0 P1,1 −

(x1)
2 P2,0 − −

(5)

The degree of the basis is directly related to the complex-
ity of the movement, as indeed a lower degree basis can not
modelize a complex movement.

2.3. Projection of a vector field onto the basis

Projection of a vector field onto a basis of degree D is ob-
tained by computing the inner product between the two func-
tions U and V associated with the field and each polynomial
Pi,j of the basis. The obtained scalars correspond to the co-
efficients of two polynomials PU and PV . Thereafter we call
them characteristic polynomials:

8>>>>>><
>>>>>>:

PU =

DX
i=0

D−iX
j=0

αi,j (x1)
i (x2)

j withαi,j = 〈 U | Pi,j 〉

PV =
DX

i=0

D−iX
j=0

βi,j (x1)
i (x2)

j withβi,j = 〈 V | Pi,j 〉

(6)

2.4. Computing a vector field from characteristic polyno-
mials

To approximate a vector field from its two characteristic poly-
nomials PU and PV , we compute the two components of each
vector by fixing the two variables of each polynomial accord-
ing to the position of the vector in the field:

∀i, ∀j ∈ [a, b]

j U(i, j) = PU (i, j)
V(i, j) = PV (i, j)

(7)

An example of movement generated from a linear combi-
nation of different polynomials is shown figure Fig. 1.

3. NOISE ROBUSTNESS

To have a reliable movement recognition method, the devel-
oped process must be robust to noise. That is why we present
here two experiments demonstrating the noise robustness of
our model.

{
PU = 3 P0,2 + 2 P1,1

PV = 2 P0,0 − 2 P1,0

Fig. 1. Example of a polynomial linear combination.

3.1. First experiment

The test process is as follows: in a basis B, two characteristic
polynomials PUo and PVo are generated by a linear combi-
nation of basis polynomials. The vector field Fo associated
with these two polynomials is computed. A Gaussian noise G
is added to this field Fo to obtain a noisy field Fn. This field
Fn is projected onto the basis B to obtain the two characteris-
tic polynomials PUn and PVn corresponding to this field Fn.
Finally the result field Fr is computed from polynomials PUn

and PVn . Then noise robustness is measured by comparing
the initial vector field Fo and the previously computed field
Fr .

Tests are made with 320x240 vector field size. Initial
fields are randomly generated (coefficients of characteristic
polynomials PUo and PVo are taken according to an uniform
distribution).

We use a normal distributed noise of standard deviation
σG which is determined by the noise quantity we want to
add: σG =

√
std(Fo)/SNR. Here the signal-to-noise ra-

tio (SNR) move between 0.1 and 2.0 by stage of 0.1.
Measurement used to compare vector fields is the mean

square error (MSE) between two vector fields.
Figure Fig. 2 represents the evolution of the MSE between

fields Fo and Fn (bright curve) and fields Fo and Fr (dark
curve), according to the SNR and the basis degree here from
0 to 6.

Fig. 2. Noise influence on the system.

Even though the added noise is significant we note that,
considering the MSE, the reconstructed field with this method
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is very close to the original field. Moreover it is also true
whatever the degree of the basis.

3.2. Second experiment

The figure Fig. 3 shows two examples of field reconstruc-
tion. The original field (a) is randomly generated from a ba-
sis of degree 3, (b) represents the slightly disturbed original
field (σG = 0.01) and (c) the strongly disturbed original field
(σG = 1.0). (d) and (e) show the two fields reconstructed
from the two previous disturbed fields. We can visually ob-
serve the denoising qualities of our model: information about
movement is preserved, even though the noise is important.

(a)

(b) (c)

(d) (e)

Fig. 3. Vector field reconstruction.

These two experiments demonstrate the good noise ro-
bustness of this method.

4. APPLICATION

We have just seen how to approximate a vector field using
two characteristic polynomials. To study the movement in a
sequence, that is to say a set of vector fields, we will study the
evolution according to the time parameter of the coefficients
of these characteristic polynomials.

The example presented here shows the face of a person.
This one turns his head on the left, on the right and to the
bottom in a random way (i.e. without preset sequence). The

video, coming from SERIBEL’s project1, is acquired using a
webcam. It contains 1050 images of size 320x240. The figure
Fig. 4 shows two frames of the sequence.

(a) (b)

Fig. 4. (a): The first frame, (b): The position after a move-
ment towards the left.

All vector fields are extracted from the original sequence
[8]. For each field, the characteristic polynomials are com-
puted by projections onto the basis. Then movement is given
by studying time variations of the coefficients of these poly-
nomials.

The degree of this basis is 2. For each images pair twelve
coefficients are obtained: six for PU and six for PV (cf. Eq.
5). To determinate the correlation of these coefficients, a prin-
cipal component analysis (PCA) is made. Here it shows that
for PU nearly 83 % of the information is carried by only one
factorial axis �E(PU ) and for PV more than 94 % of the in-
formation is also contained in only one axis �E(PV). Conse-
quently studying the movement of this sequence corresponds
to study the evolution of the coefficients of PU after projec-
tion onto �E(PU ) and those of PV after projection onto �E(PV)
(cf. Fig. 5).
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Fig. 5. (a): Projection of the PU coefficients onto �E(PU ), (b):
projection of the PV coefficients onto �E(PV).

The physical meaning of these curves is obtained by study-
ing the values of the two eigenvectors �v1(PU ) and �v1(PV) ob-
tained during the PCA. The two vector fields FPU and FPV
(cf. Fig. 6), computed by a linear combination of the polyno-
mials P of the basis weighted by the values of the two eigen-
vectors �v1(PU ) and �v1(PV ), allow interpretation of these re-
sults.

We can see than lots of vectors of the field FPU are turned
vertically upwards. Then an increase of the curve means a
movement upwards and a decrease of the coefficients means a

1Strategies Expertes de Recherche d’Informations Bibliographiques En
Ligne sponsored by TCAN CNRS.
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PU

PV

(a) (b) (c)

Fig. 6. Reference fields used to interpret results. (a): coordi-
nates system used, (b): FPU field, (c): FPV field.

movement of head downwards. The same idea can be applied
to the field FPV : an increase means a movement towards the
left and a decrease means a movement towards the right.

These curves represent movements but not the position of
the head compared to a position of reference. As in kinemat-
ics the velocity vector is the derivative of the position vector,
to study the position of the head in time equals calculating
the integral of the two previous curves. Then the curves rep-
resented figure Fig. 7 are obtained.
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Fig. 7. (a): Evolution of the vertical position of the head, (b):
Evolution of the horizontal position of the head both com-
pared to the initial position.

Figure Fig. 8 shows the sequence at a given time. The two
curves are presented to recognize the position more easily.
For example when the right curve makes a variation towards
the left, that means that the head of the person is positioned
towards the left. Thanks to these two curves all positions can
be given and so typical positions in the sequence can be rec-
ognized.
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Fig. 8. Example of variations of the weights on a movement
towards the right.

5. CONCLUSION

This work presents a first step towards a movement recog-
nition method. We have proposed an original and general
method for the modelization of vector fields. We have shown
its good noise robustness and its ability for the analysis of
simple movements.

Thereafter we plan, on the one hand, to test the method on
more complex movements such as rotations, zooms, panoram-
ics. . . and, on the other hand, to use other families of orthog-
onal polynomials to generate the basis.

Finally, as shown in the previous application movements
can be characterizedwith very few coefficients. Consequently
it could be interesting to use this method a video compression
framework.
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