
MOTION-BASED MOVING OBJECT TRACKING USING AN ACTIVE CONTOUR 

Boo Hwan Lee1, Il Choi2, Gi Joon Jeon3

1Agency for Defense Development, Yuseong P.O. Box 35-1, Daejeon, S. Korea, 2Research Institute, 3B System Inc., Daegu, 

S. Korea, 3School of Electrical Engineering and Computer Science, Kyungpook National University, Daegu, S. Korea,  

bhlee@add.re.kr, ichoi@3bsystem.co.kr, gjjeon@ee.knu.ac.kr 

ABSTRACT

It is quite important to decide the local converging direction of an 

active contour for correctly extracting the boundary of a moving 

object with a deformable shape. Thus, a new energy function for 

the active contour is proposed based on the addition of a 

directional energy term using a frame difference map to the greedy 

snake. The frame difference map is used to obtain the motion 

information of an object with a faster and non-rigid motion. Plus, 

updating rules for the frame difference map are also developed to 

encourage a stable convergence of the contour points. 

Experimental results on real image sequences showed that the 

proposed method could fully track a speedy deformable object 

while exactly extracting the boundary of the object in every frame. 

1. INTRODUCTION 

The active contours (or snakes) are dynamic curves moving within 

an image domain to capture desired image features. The curve 

motion is driven by the influence of the internal energy within the 

curve itself and the external energy derived from the image data, 

which achieves a minimal state of energy when the snakes 

conform to an object boundary or other desired features. The 

active contour models are widely used in computer vision, mainly 

for image segmentation [1-3] and motion tracking [4-5]. 

The original snake introduced by Kass et al. [6] and other 

improved snake models all adopt a variational approach to 

complete their energy minimization. The search-based technique, 

such as a dynamic programming [7], has also been proposed for 

minimization. However, those approaches give rise to the 

problems of the numerical stability and the computational burden 

to obtain admissible solutions. Williams et al. [8] then proposed 

the greedy algorithm to solve those problems. The greedy-

algorithm-based snake reasonably combines speed, flexibility and 

simplicity [1]. Nevertheless, the greedy snake still has several 

problems like the former snakes. One problem is a narrow capture 

range, that is, the initial contour has to be close to the true 

boundary, otherwise, it would be likely to converge to the wrong 

result. The gradient vector flow (GVF) snake [2] is an effective 

method to solve this problem. The GVF snake has a remarkably 

large capture range, making is less sensitive to the initialization. 

However, this method has a larger computational cost due to the 

involvement of vector diffusion, plus it is still sensitive to 

initialization despite its expanded its capture range. 

Some of the approaches mentioned above have already been 

applied to the problem of contour tracking. In the original work by 

Kass et al. [6] and followed by Leymarie and Levine [4], the snake 

unable to track a contour if the initialization provided by the 

contour detected in the previous frame is not close enough to the 

newly deformed and displaced contour in the current frame. Other 

techniques using motion estimation have been developed. Kalman 

snake [9] is appropriate when the motion of the boundary is 

predictable with no large deformations between successive frames. 

Meanwhile, an error term is used for motion compensation by 

Pardas and Sayrol [5], yet their block matching-based snake is 

unable to cope with non-rigid objects changing their shapes 

drastically in consecutive image sequences. 

Accordingly, this paper uses the greedy snake as the basis for 

a new motion-based boundary tracking method for a rigid or a 

non-rigid moving object in an image sequence. To cope with shape 

change of the moving object in tracking applications, a new 

directional energy function based on a frame difference (FD) map 

is introduced into the greedy snake to decide the local converging 

directions of the contour points. In addition, updating rules for the 

FD map are developed to encourage a stable convergence of the 

contour points. The introduced energy function allows the snake to 

increase the region of uniform convergence. The proposed snake is 

not only faster and more efficient, but also able to inflate or deflate 

its contour automatically. It has been compared with the greedy 

and GVF snakes using the real image sequences. 

2. GREEDY SNAKE 

An active contour for a discrete curve is represented as a set of 

contour points, snaxels, ( , ) | 0, 1, , 1i i ix y i nv v , where n

is the number of the snaxels and ( , )i ix y  is the Cartesian 

coordinates of the snaxel i . The energy E( )v  of the contour v ,

which is going to be minimized, is defined as 

1

int ext
0

E( ) [E ( ) E ( )],
n

i i
i

v v v (1)

where intE  and extE  represent the internal and the external 

energies of the snake, respectively. The internal energy is 

composed of the first-order continuity term Econ  and the second-

order curvature term Ecur . The external energy usually adopts the 

image term Eimage . Description of these energies is given in [1, 8]. 

The local energy E( )
j
iv  is defined as 

E( ) E ( ) E ( ) E ( ), 0, 1, ,8,
j j j j

con cur imagei i i i jv v v v (2)

where 0
i iv v  and ( 0)

j
i jv  represents the eight-neighborhood 

points of the iv . The ,  and  are the weighting parameters 

that control the snake’s elasticity, rigidity, and the attraction to the 

desired image feature, respectively. In the energy minimization 

process, every snaxel on the contour is iteratively deformed until 

convergence using a given termination criterion. For each snaxel 

iv , the energy function is computed for every point belonging to 

the eight-neighborhood of the iv . The point with minimum energy 

then replaces the current snaxel iv .
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3. PROPOSED SNAKE MODEL 

When an object moves fast and changes its shape concurrently 

between the two consecutive frames, its position and shape in the 

next frame can deviate significantly from those in the current 

frame shown in Fig. 1(a). Thus, since the greedy snake can not 

fully enclose the boundary of the object in the next frame, it loses 

the target object, which means the greedy snake can not be used to 

directly track a rigid or the non-rigid object with a large 

deformation between the two consecutive frames. 

To cope with the shape change of a moving object, adaptive 

classification of the snaxels into two groups is an attractive option, 

as shown in Fig. 1(b), where the inflating snaxels cover the partial 

growth of the object, while the deflating snaxels cover the partial 

shrinkage of the object. In Fig. 1(b), the initial contour AB 

represented by the dashed line has to deflate in order to deform 

itself toward the contour AB represented by the solid line. 

Conversely, the initial contour BC represented by the dashed line 

must inflate in order to deform itself toward the contour BC 

represented by the solid line. To accommodate this strategy, a new 

directional energy term based on a FD map is introduced to the 

greedy snake to determine the local converging directions of the 

corresponding snaxels. In addition, updating rules for the FD map 

are also included to encourage a stable convergence of the snaxels. 

(a) (b) 

Fig. 1. (a) Two consecutive frames. Head and shoulder images 
marked in the white box have a large motion. (b) Basic idea of  
proposed snake model. 

3.1. Directional Energy Based on a FD Map 

3.1.1 FD Map 

When an image sequence is captured by a static observer or a 

stabilized platform mounted on a camera, it is possible to suppose 

that the background is usually stationary or has a simple global 

motion. Thus, the background can be removed by simply 

differencing between the two successive frames. Moreover, it is 

well known that the FD is more suitable for objects with faster and 

non-rigid motions. Therefore, the FD is used to obtain the motion 

information on an object with deformation. The decision, whether 

a spatial position ( , )x yx  belongs to the changed or unchanged 

image part of two frames 1k  and k , is based on the evaluation 

of the FD defined as 

1( ) ( ) ( ),kk kFD I Ix x x (3)

where 1( ) (1 ) ( ) ( )k kkI w I w Ix x x  and w  is a weighting 

factor ranging from 0 to 1. To distinguish between relevant 

changes due to object motion or brightness changes and irrelevant 

temporal changes due to noise, the FD is compared to the threshold 

thI . Consequently, the moving parts of an object are classified into 

three different regions, and the FD map ( )kM x is generated by 

1 (leading edge), if ( )

( ) 1 (trailing edge), if ( ) - .

0 (background) , otherwise

k th

k k th

FD I

M FD I

x

x x (4)

3.1.2 Directional Energy 

A new directional energy term is introduced as the external energy 

for the proposed snake to determine whether the snaxels are to be 

inflated or deflated. The directional energy term is derived as 

follows. First, to decompose the snaxels into inflating and 

deflating snaxels, the average value of the FD map ( )kM x is

computed in the eight-neighborhood of iv . If the average value is 

greater than zero, iv  becomes an inflating snaxel, if it is less than 

zero, iv  becomes a deflating snaxel, and if the value is zero, the 

snaxel acts the same as the greedy snake. Second, to determine the 

next updating point of iv , which corresponds to the point with the 

minimum energy, the converging direction j
id is derived as follows. 

Let ( )
j j j

i ii i ip v v v v  be the directional unit vector 

connecting the two points j
iv  and iv . Let in be the unit vector 

lying at right angles to the vector connecting the two adjacent 

snaxels of 1iv  and 1iv  at iv . The direction of vector in  has two 

different directions, i.e. outward and inward. Thus, let vectors in

and in , as shown in Fig. 2(a), be the outward and inward 

directions vectors for vector in at iv , respectively. If iv is an 

inflating snaxel, the converging direction is the inner product of 

the two vectors, j
ip  and in , which is defined by j j

ii id p n .

Meanwhile, If iv  is a deflating snaxel, the converging direction is 

defined as j j
ii id p n . Finally, the directional energy term can be 

defined as 

E ( ) 1 ( ) ,
j j j

dir ki i iM dv v (5)

where ( )j
k iM v  is the value of the FD map at j

iv . Note, if iv  lies 

in the background region, ( )
j

k iM v is zero for every point belonging 

to the eight-neighborhood of the iv . Thus, the directional energies 

have the same value, as ( ) 0j
k iM v , which means the role of iv

becomes the same as that of the greedy snake.

The validity of Eq. (5) is explained as follows. Consider that 

the inflating snaxel iv  lies on the leading edge, as shown in Fig. 

2(a). For the case of 1
iv  in the eight-neighborhood of iv , the 

second term in Eq. (5) is at its minimum value, as 1( ) 0k iM v  and 
1 1i ip n , whereas the directional energy 1E ( )dir iv  is at its 

maximum value, thus iv  does not deflate toward the 1
iv  due to the 

energy minimization rule. Meanwhile, for the case of 8
iv , the 

second term in Eq. (5) is at its maximum value, as 8( ) 1k iM v  and 
8 1i ip n , whereas the directional energy 8E ( )dir iv  is at its 

minimum value, thus iv  can inflate toward 8
iv , as shown in Fig. 

2(b). Similarly, E ( )j
dir lv  can adaptively determine the converging 

direction of the deflating snaxel lv  lying on the trailing edge, as 

shown in Fig. 2(b). 

By introducing Eq. (5) into Eq. (2), a new energy function can 

be defined as

newE ( ) E ( ) E ( ) E ( )

                    E ( ),    0,1, ,8,

j j j j
con cur imagei i i i

j
dir i j

v v v v

v
(6)

where 1 . Finally, the new updated snaxel iv , as 

shown in Fig. 5(b), is determined as 

newE ( ), 0,1, ,8.arg min
j

i

j
i i j

v

v v (7)

Every snaxel is sequentially updated in a clockwise direction 

using Eq. (7), and this is repeated until all the snaxels converge at 

the boundary of the object. Note, since Eq. (5) provides the same 

value for both 1
iv  and 8

iv  for the updated snaxel iv , as shown in 

Fig. 2(c). When the next updating snaxel iv , it is impossible to  
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 (d) (e)  (f) 

Fig. 2. Example of updating snaxels using directional energy. The 
white, black, and gray regions represent the leading edges, trailing 
edges, and background of FD map, respectively. 

determine whether its location is at 1
iv  or 8

iv in the updating  

procedure. Accordingly, the FD map represented by the shaded 

area shown in Fig. 2(d) must be updated with the value 0  during 

the period right after a specific snaxel has just been updated and 

before the next snaxel is updated. After updating the FD map 

represented by the shaded area shown in Fig. 2(e), the next 

updating point for snaxel iv can be determined using 8
iv . Thus, 

every snaxel can deform itself toward points on the boundary of 

the object, as shown in Fig. 2(f), through repeatedly relocating and 

updating the FD map. 

3.1.3  Updating the FD Map 

After updating the location of a snaxel using Eq. (7), the FD map 

must be locally updated with the value 0 around the snaxel. For 

this, updating rules for the FD map are proposed as follows. First, 

the local shape of the three adjacent snaxels 1iv , iv , 1iv ,

including the currently considered snaxel iv , is categorized as 

convex or concave, as shown in Fig. 3. Here,  is the counter 

clockwise angle from the horizontal axis to the line connecting 

1iv  and iv  together, while angle is the counter clockwise 

angle from the horizontal axis to the line connecting 1iv  and 1iv

together. If , it is categorized as convex, as shown in Fig. 

3(a) and 3(b). Otherwise, if , it is categorized as concave, as 

shown in Fig. 3(c) and 3(d). Second, the three adjacent snaxels 

including the currently considered snaxel, are located either within 

the right half plane (RHP) or the left half plane (LHP). As shown 

in Fig. 3(a) and 3(c), if the sequence of the snaxels 1iv , iv , 1iv

proceeds in a clockwise direction from 12 to 6 o’clock, it belongs 

to the RHP, whereas if the sequence proceeds in a clockwise 

direction from 6 to 12 o’clock, it belongs to the LHP, as shown in 

Fig. 3(b) and 3(d). Third, the currently considered snaxel is either 

inflated or deflated based on the average value of the ( )kM x  in the 

eight-neighborhood of iv . Finally, the updatable region of the FD 

map at a specific snaxel is determined based on a combination of 

the three rules mentioned above. All the updating FD map 

categories are given by 

C1: Convex RHP Inflation Concave LHP Deflation

C2: Convex RHP Deflation Concave LHP Inflation

C3: Concave RHP Inflation Convex LHP Deflation

C4: Concave RHP Deflation Convex LHP Inflation.

�
�

�
�

�
�

�
�

�����
�

��
����

(a) (b) (c) (d) 

Fig. 3. (a) Convex and RHP. (b) Convex and LHP. (c) Concave 
and RHP. (d) Concave and LHP.

  (a)   (b)

  (c)   (d)

�����
�

��
����
��

�

Fig. 4. Updatable regions of FD map. (a) C1 case. (b) C2 case. (c) 
C3 case. (d) C4 case.

Figure 4 shows the updatable regions of the FD map 

according to each category. Here, the gray area represents the 

regions of the FD map to be updated. These regions are easily 

defined by one or two triangles based on the simplex coordinates

[10]. 

4. EXPERIMENTAL RESULTS AND DICUSSION 

Several experiments on the three kinds of real image sequences 

were conducted to examine the performance of the proposed snake 

model. The two image sequences were acquired by infrared 

imaging device with wavelength 3 ~ 5 m . One is a bowing woman 

and the other is a walking woman with 320 240 pixels. The third 

sequence acquired by infrared imaging device with wavelength 

8 ~ 12 m  is a moving tank with  640 480 pixels. To fully explore 

the proposed snake, we compared it with the greedy and GVF 

snakes. 

Figure 5 shows the boundary tracking results of the greedy, 

GVF, and proposed snakes for the two consecutive frames in the 

bowing woman image sequence as shown in Fig. 1(a). Since the 

initial contour does not lie within the capture range, the greedy 

snake with 0.15, 0.15, 0.3  fails to deform it toward the 

boundary of the head and shoulder as shown in Fig. 5(a). The GVF 

snake with 0.05, 0.0, 0.2 , as shown in Fig. 5(b), also 

does not evolve correctly its shape toward the boundary because 

the initial contour does not enclose the ‘center of divergence’ [11] 

of the GVF field. Whereas the proposed snake with 0.15,

0.15, 0.3, 0.4, 0.3w , as shown in Fig. 5(c), shows that it 

is less sensitive to the initialization and is able to track the speedy 

non-rigid object. In addition, Fig. 6 shows the evolving of the 

contour and the updating of the FD map. It can be easily seen that 

the initial contour, which is far away from the target object, 

converges correctly toward the boundary of the object while 

inflating and deflating its contour automatically with updating the 

FD map under the control of the proposed directional energy. 

Figure 7 shows the results of the greedy, GVF, and proposed 

snakes for walking woman. In this experiment, the location of the 

initial contour was the same for all the snakes, while the values of 

the parameters were the same as those in Fig. 5. Figure 7(a) shows 

the four consecutive frames for walking woman image sequence, 

where significant motion occurs with the left leg, head, and neck 

among the successive frames. The greedy and GVF snakes were 

unable to deform toward the boundary of the walking woman due 

to their significant motion as shown in Fig. 7(b) and 7(c),  
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 (a)              (b) (c) 
Fig. 5. Comparison of results for boundary tracking of bowing 
woman. The initial contours represented by the dashed line are 
overlaid on (a) the Gaussian weighted edge image, (b) the GVF 
vector field, and (c) the FD map marked in the white box shown in 
Fig. 1(a), respectively. The final contours, represented by the solid 
lines, were converged by using (a) the greedy, (b) GVF, and (c) 
proposed snakes, respectively. 

Fig. 6. Contour evolving and FD map updating sequences. 

 (a) (b) 

 (c) (d) 
Fig. 7. Comparison of results for boundary tracking of walking 
woman. (a) Walking woman image sequence. The final contours, 
represented by the solid lines, were converged using (b) the 
greedy, (c) GVF, and (d) proposed snakes, respectively. 

 (a) 30th frame (b) 60th frame (c) 90th frame (d) 120th frame 

Fig. 8. Tracking of moving tank within a short range using the 
proposed snake. 

respectively. In contrast, despite the non-rigid walking motion, the 

proposed snake produced a satisfactory performance, as shown in 

Fig. 7(d).

Figure 8 shows the results for the moving tank within a short 

range, where the vehicle initially moved to the front then turned in 

opposite direction. The values of parameters in this experiment 

were the same as those in Fig. 5, and 0.5w . Note that the 

proposed snake successfully converged on the final object in 

image sequence. For this image sequence, the results for the GVF 

snake were almost the same as those for the proposed snake, 

however, the greedy snake was unable to extract the object 

boundaries due to the fast motion and shape changes (These results 

are not shown here to the limitation of pages). 

A comparison of the computation time for the greedy, GVF 

and proposed snakes was also carried out, and the tests were run 

using a Pentium IV-3GHz processor with a 512MB memory. The 

algorithms shown below were all written using MATLAB. Table 1 

shows that the computation cost increases drastically in the GVF 

snake due to finding the GVF vector field. The proposed snake did 

require more computation time than the greedy snake, due to its 

additional directional energy term and the updating process for the 

FD map. However, when comparing the snake evolution results in 

Fig. 5, Fig. 7, and Fig. 8, the proposed snake clearly exhibited a 

better boundary localization than the greedy and GVF snakes.

Table 1. Comparison of the average computation time of the 
greedy, GVF, and proposed snakes. 

Image sequence Proposed snake Greedy snake GVF snake

moving tank 7.4sec 5.0sec 92.2sec 

5. CONCLUSION 

A motion-based boundary tracking algorithm was presented for 

use with the greedy snake to stably track a rigid or non-rigid 

moving object in an image sequence. To cope with the shape 

changes of a moving object in tracking applications, a new 

directional energy term based on a FD map is introduced to the 

greedy snake and updating rules for the FD map are developed. 

The proposed snake is not only faster and more efficient, but 

also able to inflate or deflate its contour automatically. Moreover, 

the initial contour does not need to be close to the true boundary, 

which causes the boundary tracking problem. The proposed snake 

has been compared with the greedy and GVF snakes using the real 

image sequences. The experimental results showed that the 

proposed snake produced a better performance for boundary 

localization and quick tracking of a deformable object in every 

frame.
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