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Abstract

This paper aims to develop a novel framework to systematically 

trade-off computational complexity with output distortion, in 

linear multimedia transforms, in an optimal manner. The 

problem is important in real-time systems where the 

computational resources available are time-dependent. We solve 

the real-time adaptation problem by developing an approximate 

transform framework. There are three key contributions of this 

paper – (a) a fast basis approximation framework that allows us 

to store signal independent partial transform results to be used 

in real-time, (b) estimating the complexity distortion curve for 

the linear transform using a basis set and (c) determining 

optimal operating points and a meta-data embedding algorithm 

for images that allows for real-time adaptation. We have applied 

this approach on the FFT transform with excellent results. 

1. Introduction

In this paper we present 

a novel framework for 

developing linear 

transforms that adapt to 

changing computational 

resources. The problem 

is important since in 

real-time multimedia 

systems, the 

computational resources 

available to content 

analysis algorithms are not fixed, and a generic computationally 

scalable framework for content analysis algorithms is needed. 

The problem is made difficult since the relationship between 

computational resources and distortion depends on the specific 

content.

For example in Figure 1, we show an example of a system 

shows computational resources are changing over time. 

However, for a fixed analysis transform (e.g. FFT / DCT) there 

will be a time between t1 and t2 when the transform cannot 

operate at all. We seek an approximate transform that is able to 

gracefully adapt to the resources available with variable error. 

There has been prior work on adaptation in multimedia. There 

has been work on content adaptive transcoding [7] that focuses 

on adapting the media stream. Other complexity-scalable work 

includes [2] that looks at graceful degradation of video decoders 

under resource constraints. In more theoretical work [4] the 

authors look at properties of approximate transform formalisms 

and [5] looks at relationship between Kolmogorov complexity 

and distortion. However several issues remain – (a) while there 

has been some success in complexity scalable decoders, there 

are no formal generic adaptation strategies to guide us for other 

content analysis applications, (b) given a specific transform (say 

DCT) approximation and distortion, there is no framework that 

enables us to change the approximation in real-time to take 

advantage of additional computational resources to minimize 

distortion.

There are three key ideas in this paper. First we show that a 

linear transform can be efficiently approximated with low 

computational complexity using a basis projection technique. 

Then we show that for a linear transform, there exists a 

complexity distortion curve, that is estimated using a basis 

projection. Finally we show how optimal operating points from 

the C-D curve can be added as metadata to the images, with 

about 1.5% increase in the size of the image. We use the FFT as 

the linear transform, and the Haar wavelet basis as the 

approximating projection. We show excellent results on the 

standard Lena image. 

2. Linear Transform Approximation 

We now formally define the technical problem, and present our 

basis projection solution. Let T be the linear transform that we 

wish to approximate, and let x and y be the input and output 

vectors respectively (i.e. y = Tx). For definiteness, assume that T

is a NxN matrix, and x and y are Nx1 dimensional vectors. Let 

C(T) represent the computational complexity of the transform T.

Let the computational resources available to compute the 

transform be Co. Then the desired approximate transform Ta is 

defined as follows: 

: ( )

arg min
a a o

a a
T C T C

T y y
≤

−  <1> 

Where ya is the approximated output (ya = Tax). The equation 

indicates that the approximate transform Ta minimizes output 

distortion while satisfying computational complexity 

constraints. We represent the approximation Ta as a composition 

of operators: Ta = TP, where P is a (NxN) linear projection 

operator. In order to see how this can be used, let P = BkBk
T

where the column vectors of Bk are orthonormal. Bk is an Nxk

matrix with only k column vectors. Then the output and the 

distortion are calculated as follows:  

,

( ) ,

T

a k k

T

a k k
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This decomposition allows us to compute ya into two steps – (a) 

project x onto Bk, then (b) project the result onto TBk. The 

significant advantage is that TBk is independent of the input, and

can be computed and stored offline. We only need compute BT
kx

during real-time computation and combine with the stored TBk

matrix. A good choice of basis set Bk, can ensure that 

computational complexity of Bk (C(Bk)) is significantly less than 

C(T). Note that if Bk were an NxN matrix (i.e. k = N), then there 

is no error. The general factorization of P, when Bk is only 

independent, but not orthonomal is considered in [1]. 
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Figure 1: complexity for fixed and 

adaptive transforms
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3. FFT Approximation 

In this section, we apply the basis set projection technique on 

the FFT, using a Haar basis projection. We chose the FFT as it 

is a widely used linear transform in multimedia applications. 

Our approach is complementary to already existing efficient 

FFT implementations.  

We analyze the complexity of 2D FFT for an 8*8 image block 

in which the components are real numbers. Note the exact 2D 

FFT has a fixed computational complexity, over all inputs. In 

this paper we shall assume that a single real addition, 

subtraction, or multiplication use equivalent resources. When 

the computing costs are different, they can be accounted for 

using a weighted sum. We can show that the 2D FFT for an 8*8 

real block requires 764 operations. It can be easily shown that 

the traditional DFT takes 1524 operations. Compared with DFT, 

FFT significantly reduces the amount of computation.  

3.1 Approximation using Haar Wavelet Basis 

In this section, we shall discuss FFT approximation based on 

Haar wavelet basis [6]. The 2D nonstandard Haar wavelet basis 

decomposition for an 8*8 block (x) can be represented as: 

1 2 12 1
0 0
0,0 0,0 , , , , , ,

0 0 0

( )

j jJ
j j j j j j

J k l k l k l k l k l k l
j k l

x c d e fφφ φψ ψφ ψψ
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= = =
′ = + + + <3>

Where x′J is the Haar 

wavelet approximation 

of image block x at the 

Jth resolution, c0
0,0 and 

φφ0
0,0 are the scaling 

coefficient and scaling 

function respectively, 

dj
k,l and φ j

k,l are the 

(k,l)th horizontal wavelet 

coefficient and function 

at the (j+1)th resolution, 

ej
k,l and  φ j

k,l are the 

(k,l)th vertical wavelet 

coefficient and function 

at the (j+1)th resolution, 

fj
k,l and j

k,l are the 

(k,l)th diagonal wavelet coefficient and function at the (j+1)th

resolution. The nonstandard Haar wavelet basis is shown in 

Figure 2. Each wavelet function is an 8*8 matrix. 

3.1.1 Basis Parameter Estimation 

The 2D Haar wavelet parameters can be obtained easily by the 

inner product of image block x and the corresponding Haar 

wavelet function. For example, the (k,l)th horizontal wavelet 

coefficient at the (j+1)th resolution dj
k,l can be obtained by: 

, ,|j j
k l k ld x φψ= , <4> 

where <|> is the inner product operator and φ j
k,l is the (k,l)th

horizontal wavelet function at the (j+1)th resolution. 

In order to speed up computation, we use unnormalized Haar 

wavelet basis to approximate image block and incorporate the 

normalized factor into FFT of Haar wavelet basis functions by 

multiplying the FFT of Haar wavelet basis functions and their 

corresponding normalized factor offline. In Figure 2, the plus 

signs and minus signs are +1 and -1and the blank region is 0. 

At resolution J=0, computing c0
0,0 for an 8*8 image block 

requires 63 additions. At resolution J=1, we can use the 

intermediate results of c0
0,0 computation to speed up. For 

example, when we compute c0
0,0, we first divide the image 

block into 4 non-overlapping sub-blocks and compute the sum 

of each sub-blocks [s1, s2, s3, s4]
T. Second, we compute the sum 

of top two sub-blocks and bottom two sub-blocks [b1=s1+s2,

b2=s3+s4]
T. Finally, we compute the addition of b1 and b2 and 

obtain c0
0,0. Thus, computing d0

0,0=b2-b1, e0
0,0=(s1-s2)+(s3-s4)

and f0
0,0=(s3 –s4)-(s1-s2) requires additional 1, 3 and 1 operations 

respectively. Hence, at resolution J=1, parameter estimation 

needs 68 operations. Similarly, the parameter estimation at 

resolution J=2 requires 88 operations. 

3.1.2 FFT of Haar wavelet Basis Functions 

We compute the  FFT of all 2D Haar wavelet basis functions 

with size 8*8 offline and combine them together to obtain FFT 

approximation:  
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0 0 0

1 2 1 2 1
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where F(⋅) is an 8*8 FFT operator.

Figure 3 FFT matrix form for Haar wavelet basis at resolution 

J=0,1,2. Shaded regions are the non-zero components.

The forms of FFT matrices of Haar wavelet basis functions are 

shown in Figure 3. The complexities of FFT of Haar wavelet 

basis functions at resolution J=0,1,2 are 0, 12 and 98 operations 

respectively.  

3.1.3 Overall Complexity 

The computational complexity of FFT approximation using 

Haar wavelet basis includes two parts: (a) Complexity of basis 

parameter estimation, (b) FFT computation for basis functions. 

Combining these two parts, we obtained the complexity of FFT 

approximation based on Haar wavelet basis. 

Table 1 Complexity (number of operations) of FFT 

approximation using Haar wavelet basis  

J = 0 J = 1 J = 2 Exact FFT 

63 80 186 764 

In [1], we show how the projection technique can be used with a  

polynomial basis.  

4. Complexity-Distortion Curve 

In this section, we will do two things (a) establish a theoretical 

framework for the complexity-distortion (C-D) curve for linear 

operators, and (b) obtaining a useful estimate of the C-D curve 

using basis set approximations. 

4.1 C-D Curve Definition

We use the well established definitions from rate distortion 

theory [3], to define the relationship between complexity and  

Figure 2: 2D nonstandard Haar 

wavelet basis.
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distortion. For the sake of definiteness, let us assume that the 

linear operator is the FFT. It is easy to see that these results 

generalize to arbitrary linear transforms. 

Let X be a size M*N image which is divided into K1*K2 blocks. 

The complexity C of the FFT approximation of X is defined as 

the average number of operations per block. We then define the 

distortion D due to the transform approximation as follows:  

1 2

1 2

1 2 1 2
1 11 2

1
( ( , ), ( , ))

K K

a
k k

D d Y k k Y k k
K K = =

=
⋅

 <6> 

where Y(k1,k2) and Ya(k1,k2) are exact FFT matrix and 

approximation FFT matrix of block(k1,k2) respectively, d is a 

distortion measure. The complexity distortion region R(C,D) for 

an image for the FFT transform is defined as the closure of the 

set of achievable complexity distortion pairs (C,D).

The complexity distortion function C(D) for each image, for the 

FFT is defined as the infimum of complexities C such that (C,D)

is in the achievable complexity distortion region of the image 

for a given distortion D. Since C(D) is the minimum complexity 

over increasingly larger sets as D increases,  C(D) is non-

increasing in D. In [1], we prove that C(D) is convex.

4.2 Basis set approximations 

The C(D) lower bound needs to be estimated and we propose 

the use of a basis-set approximation (e.g. polynomial / Haar) to 

estimate the bound. A basis set approximation leads to a Basis 

Set Complexity Distortion Function (BSCDF). The complexity 

distortion function of an Image X for basis set b is defined as: 

 ( ) inf ( )
b
X

b b
X X

D D
C D C

≤
=  <7> 

where Cb
X and Db

X are achievable average complexity and 

distortion of FFT approximation for the image X using basis set 

b respectively. If the image size is large, the computation of 

BSCDF is very expensive even if we only use three resolutions 

of Haar wavelet basis. Hence, we present a fast step-wise 

algorithm to estimate BSCDF of Haar basis with resolution 0, 1, 

2. This procedure also holds true for other basis projections such 

as the polynomial basis.  

We begin by noting the highest computational complexity (and 

minimum distortion) is when we use the highest Haar resolution 

for all image blocks. Conversely, the lowest computational 

complexity (and highest distortion) is when all blocks are 

projected on lowest (J=0) Haar basis. The step-wise algorithm

starts from the (C,D) pair such that FFT approximation based on 

Haar basis resolution 2 is used for all image blocks and ends 

with (C,D) pair where FFT approximation for all image blocks 

are based on lowest (J=0) approximation. At each step, we first 

select the image block with FFT approximation based on Haar 

resolution 1 or 2 such that decreasing the resolution by 1 

introduces the maximum ratio between complexity decrement 

and distortion increment (|∆C/∆D|). i.e. we look for blocks that 

maximize the rate of change, thereby intuitively being close to 

the tangent to the C-D lower bound. Then we reduce the 

resolution of the Haar basis approximation by 1 for the selected 

block and get a new (C,D) pair. Hence, we will obtain a C-D 

curve estimation by repeating this procedure. The estimation 

results are shown in Figure 4. We can see that the exact BSCDF 

and estimation are very close for both polynomial basis 

approximation and Haar wavelet basis approximation. 

5. Determining C-D Metadata in Images 

In this section, we shall discuss how to do resource adaptive 

FFT approximation in real applications. The idea is we select 

several operating points or (C,D) pairs along the estimation of 

basic set complexity distortion curve and save the corresponding 

(C,D) values and approximation degree / resolution matrices in 

the image metadata during the encoding. In the real FFT 

approximation, we select an appropriate operating point which 

guarantees that complexity constraint is satisfied and use the 

corresponding approximation degree matrix to do FFT 

approximation. 

5.1 Operating point selection 

We now show to approximate the C-D curve, using K operating 

points on the curve. We use our step-wise algorithm (see section 

4.2), to estimate the C-D curve. We shall assume that the 

operating point (Ci,Di) is used when the available complexity C 

is in interval [Ci,Ci-1). This will introduce distortion: 

1
( )[ ( )]

i

i

C

i iC
D p C D D C dC

−∆ = − , <8> 

where p(C) is the pdf of complexity constraint and D(C) is the 

inverse function of C(D). Thus, the overall introduced distortion 

is: 

1
1 1

1 1

( )[ ( )]
i

i

K K
C

i iC
i i

D D p C D D C dC
−

+ +

= =
∆ = ∆ = −  <9> 

Therefore, the optimal selection is choosing the K operating 

points with the minimum introduced distortion. In [1] we proved 

that when K=1, the optimal single operating point for a C-D 

curve starting from (Cs,Ds) to (Ce,De) (Cs>Ce) is: 

* *

( , )

( , ) arg max[( ) ( ( ) ( ))]

( ) ( )

e s
c d

c

C D D d f C f c

f c p C dC

ξ∈

−∞

= − ⋅ −

=
 <10> 

where ξ is the set of all (C,D) pairs on the C(D) curve. We show 

in [1] that if {(Ci,Di), i=1,…,K} are optimal K operating points 

of C-D curve starting from (C0,D0) to (CK+1,DK+1) and 

C0≥…≥CK+1, D0≤…≤DK+1, (Ci,Di) is the optimal single operating 

point of the sub-curve of C(D) which starts from (Ci-1,Di-1) to 

(Ci+1,Di+1). Thus, we can use an iterative algorithm to obtain the 

K operating points. In the algorithm, we initially select K

operating points randomly and order them in complexity value. 

At each iteration, we update (Ci,Di) i=1,..K with the optimal 

single operating point (ref. eq. <10>) of the sub-curve between 

(Ci-1,Di-1) to (Ci+1,Di+1) (assuming that p(C) is uniform). Finally, 

{(Ci,Di)} will converge to the optimal operating points. 

5.2 Encoding and using metadata 

We show how to compute metadata for the Haar basis using K 

operating points. An identical approach yields the metadata for 

the polynomial basis [1]. In the image encoding phrase, compute 

the estimation of basis set complexity distortion curve for Haar 

and polynomial basis set with resolution / degree 0, 1, 2 for the 

image and select the optimal one. Second, we select the K

operating points along the C-D curve of selected basis set. Thus, 

with the two ending points of the C-D curve, we have K+2

operating points denoted as (Ci,Di), i=0,…,K+1, C0≥…≥CK+1,

D0≤…≤DK+1. Obviously, (C0,D0) and (CK+1,DK+1) are the two 

ending points of the C-D curve. Finally, we save three things in 
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the image metadata: (a) basis bit: (0: polynomial basis and 1: 

Haar wavelet basis), (b) K+2 (C,D) values: (each is a 16 bit 

float) and (c) K approximation degree matrices Mi, i=1,…K: Mi

is corresponding with the (Ci,Di) with size K1*K2 where K1 and 

K2 are number of 8*8 image blocks along the vertical and 

horizontal dimensions respectively. Mi(k,l) is the degree / 

resolution number of polynomial / Haar wavelet basis 

approximation for the block (k,l) and needs 2 bits. Since the 

approximation degree matrices corresponding with (C0,D0) and 

(CK+1,DK+1) are matrices whose components are all two and zero 

respectively. We need not save them in the metadata. Therefore, 

the size of metadata is 2KK1K2+32(K+2)+1 bits. When we set 

K=4, metadata size is about 1/64 of the gray level image.  

In the FFT approximation phrase, the image and computational 

complexity constraint C are given. We first read the basis bit 

and select corresponding basis set. Then we select Ci such that 

Ci-1>C≥Ci from the list of complexity values saved in the image 

metadata. Finally, we use Mi which is corresponding to Ci to do 

FFT approximation. The complexity of this approximation is 

guaranteed to be less than the complexity constraint. 

6. Experimental Results 

We used a well known image – Lena at resolution 256*256 to 

test our algorithm. Our experimental results include two parts: 

(a) estimation of polynomial and Haar wavelet basis set 

complexity distortion curves and (b) optimal operating point 

selection. 

6.1 Estimation of BSCDF 
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Figure 4. BSCDF estimation. (a) BSCDF estimation results for 

polynomial basis set and Haar wavelet basis set. (b) Complexity 

difference between exact BSCDF and estimation.

For an image divided into K1*K2 blocks, 8*8 pixels each, we use 

average operation number per block as the complexity C of FFT 

approximation of the image. The distortion is mean squared 

difference. Figure 4 (a) shows the exact basis set complexity 

distortion curve and the estimation using step-wise algorithm for 

polynomial basis set with degree 0, 1, 2 and Haar wavelet basis 

set with resolution 0, 1, 2. We can see that two BSCDFs are 

non-increasing convex curves and the estimation results are very 

close to the exact BSCDFs. In Figure 4 (b), we plot the 

normalized complexity difference. Given a C-D pair (C,D) on 

the exact BSCDF, we can obtain the corresponding C-D pairs on 

the estimation curve (C′,D) with the same distortion and 

compute normalized complexity difference (C′-C)/C. The 

average normalized complexity differences for polynomial basis 

and Haar wavelet basis are 0.19% and 0.045% respectively 

which shows that our BSCDF estimation algorithm is excellent. 

We also observe that Haar wavelet basis FFT approximation is 

better than polynomial basis FFT approximation. This is 

because we use a separable, non-orthogonal polynomial basis 

[1]. 

6.2 Operating point selection 

Figure 5 shows 

the optimal 

operating point 

selection (K=4)

results on the 

estimation of 

Haar wavelet 

basis set 

complexity 

distortion curve 

by using 

iterative

algorithm. For 

each operating 

point, we also show the corresponding recovered image by 

using exact inverse FFT (IFFT). The triangles in the figure are 

the two end points and the stars are the 4 optimal operating 

points.

7. Conclusion

In this paper, we have attempted to create a systematic 

framework for trading off computational complexity with 

distortion. There were three key ideas – (a) orthonormal basis 

functions to approximate the input, (b) we showed the existence 

of a convex complexity-distortion curve, and show how to 

approximate the curve given a specific basis. Finally we showed 

how to compute operating points on the C-D curve, and embed 

metadata in the image.  
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