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ABSTRACT

The complex diffusion process, recently introduced in im-
age processing and computer vision by combining the linear
diffusion equation and the ’free-particle’ Schrédinger equa-
tion, is further generalized by incorporating the Schrodinger
potential. We show that this generalized complex diffusion
equation is inherently endowed with processing properties
suitable for dealing with textures in a naturally coupled man-
ner. The schrédinger potential is self adopting to the specific
properties of an image at hand in that it implements an image
specific wavelet shrinkage algorithm. Results indicate that the
generalized complex diffusion processing scheme not only
preserves textures better than demonstrated by previously re-
ported results, but can even enhance textures by adjusting the
coefficient that determines the magnitude of the potential, rel-
ative to the potentialless complex diffusion. This is in a way
analogous to the enhancement of edges by the Forward-and-
Backward diffusion process.

1. INTRODUCTION

The scale space is a well established and productive multi-
resolution approach to image processing and analysis (e.g.
[10]). Considering a given image as the initial condition, I,
the information distribution over all scales is obtained by the
solution I(x,y,t) of the linear diffusion equation. To over-
come the compromise in the quality of detail information in
the form of edges, Perona and Malik [9] introduced a non-
linear adaptive diffusion process, wherein the diffusion co-
efficient is diminished in its value as the process approaches
large gradients, i.e. edges. This adaptive process has been fur-
ther generalized to incorporate forward-and-backward (FAB)
diffusion [4]. These authors have also generalized the diffu-
sion image processing scheme by combining the inherently
real-valued diffusion equation with the imaginary-valued
“free’ (potentialless) Schrodinger equation, thereby combin-
ing properties of the forward and backward diffusion, in that

This research has been supported by the HASSIP Research Network Pro-
gram, sponsored by the European Commission and the Ollendorf Minerva
Center for Vision and Image Sciences.

1-4244-0469-X/06/$20.00 ©2006 IEEE

II- 633

the imaginary part is a smoothed second derivative scaled by
time. Thus, the complex diffusion process combines both
highpass and lowpass scale-spaces and exhibits in its discrete
form both Gaussian and Laplacian-of-Gaussian pyramids [1].

Both the real-valued and complex-valued linear and non-
linear diffusion processes have been shown to be effective
under the assumption that images are primarily composed of
smooth areas and edges, adopted from computer vision. Con-
sequently, the quality of textures is compromised in most pre-
viously published versions of the real and complex diffusion
processes. The purpose of the present study is to deal with the
textural attributes of images in a coherent manner as part of a
general processing scheme that is capable of achieving it, in
addition to denoising and enhancement of edges exhibited by
real- and complex-valued diffusion processes.

It is well known from physics that the Schrodinger equa-
tion with potential generates an oscillatory response of a par-
ticle to the conditions imposed by a specific structure of the
potential. This behavior of the Schrodinger equation high-
lights the idea that incorporating the potential into the com-
plex diffusion equation, may introduce some kind of ’dynamic
boundary conditions’ that may serve as a filter or even en-
hancing mechanism for textures. We therefore incorporate a
potential that is devised as a function of the textural proper-
ties and the structure of the processed image. This is accom-
plished by implementing a potential comprised of a nonlin-
ear wavelet transform of the initial (given) noisy image. It is
shown that such a potential indeed preserves or even enhances
the texture that is highly structured as compared to the white
Gaussian noise.

2. ANISOTROPIC DIFFUSION
The anisotropic diffusion process is defined by
L=V-(c(VI)VD); I()|_g=1To ¢()>0, (1)

with zero Neumann boundary-conditions, where I is the ini-
tial image and c(-) is a positive monotonically decreasing
weight function. Choosing Iy to be a noisy image, which
consists of white Gaussian noise N with variance o2 added
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to the original noiseless image,
IO = Ioriginal + N P (2)

this process yields an effective denoising algorithm without
compromising on the quality of sharp edges. The edges can be
even enhanced by the so-called Forward-and-Backward diffu-
sion [4].

An improvement of this process was achieved using a
complex diffusion coefficient with small imaginary compo-
nent [6], by replacing ¢ (-) with ¢(-) = e?c(-), using a small
6. The resulting imaginary part is a smooth approximation of
the Laplacian of the real image, while the real part is the linear
diffusion scale-space of the initial image. By nonlinearly cou-
pling the real and imaginary parts of the complex diffusion,
the ramp preserving diffusion (RPD) process emerges [6]:

o0

I; =V-(c(Im(I)VI), c(Im(])) = ————5,
1+ (In}l(eI))

where k is a soft threshold which needs to be determined. By
using the imaginary part as an edge detector, diffusion within
ramp type edges is enabled.

A3)

3. WAVELET SHRINKAGE

Let W (Ip) = {wjx,} denote the wavelet transform of the
noisy image /. Examining (2) in the wavelet coefficient do-
main, the wavelet coefficients of I, w, can be separated into
those corresponding to I,rigine; and N, denoted by 6 and 2
respectively:

Wikt =058+ 2kl s “)

where j and k are the translation indices, and [ is the scale
index. We use an orthonormal basis of compactly supported
wavelets, with which the noise, z; . ;, remains white also in
the wavelet coefficient domain [2]. A subset of thresholded
wavelet coefficients provides a sparse representation of nat-
ural images, which are usually spatially inhomogeneous func-
tions [8]. Combining the last two statements, it is concluded
that a few of the w coefficients contribute primarily signal and
contain most of the energy, whereas the rest of the coefficients
are small in absolute value and consist mostly of noise z. Due
to the latter, soft thresholding of the detail coefficients (which
contain texture information),

N (W k1) = sign (wj k1) max (|wj ki —A,0) ,  (5)

and subsequently applying inverse wavelet transform, results
in denoising of the image. The approximation coefficients are
not thresholded as they are not sparse and mainly consist of
signal rather than noise.

4. DIFFUSION WITH POTENTIAL

There are different texture handling approaches [5], but we
restrict the discussion to generalized complex diffusion. The
complex diffusion PDE is very similar to the free particle
Schrodinger equation [6]

7 0
h—— =

BQ
=M+ V (@)Y ©)

with V' () = 0. Let us examine therefore the general diffu-
sion equation with potential:

I =cAI+V(x)I; I(t)|,_g=1o, ¢>0 (7)
where V () is a spatially varying potential. Using operator
form this can be written as

Iy =HI; I(t),_q=1Ip, ¢>0 |, ®)

where H = ¢A + V (z). The solution is
I = thIO — e(cA+V(:I:))tIO , (9)

where ef’* denotes the operator which consists of the power
series of the exponent. With this derivation, the stability of the
solution can be examined and the potential family for which
a solution exists can be determined. Without getting into this
detailed analysis which is beyond the scope of this paper, we
examine an analogue to the physical potential, in the complex
diffusion process. The motivation is to add a force which
preserves texture while the image is selectively smoothed and
denoised:

L=V -(c(Im(I)VI)+aVI (10)
As wavelet coefficients (under the model described in section
3) represent the extent of local oscillations in a given scale [8],
they seem a natural choice from which to derive the potential.
The potential V' is obtained by applying soft wavelet shrink-
age to the initial noisy image, but reconstructing only the de-
tail coefficients as they represent the textural information lost
in (3). Multiplying it by a factor « is required in order to
balance the potential’s influence on the denoising process and
that of the complex diffusion term. Let 7 be the nonlinear op-
erator of thresholding and setting on zero the approximation
coefficients, then

V=WH(T {W ()} (1D

The wavelet transform can be designed or selected to best
fit the image at hand. To accommodate orientation specific
texture components, nonseparable wavelets are preferred. In
order for o to be as general as possible o = o/ max |V,
where o is determined empirically. Further insight into the
best choice of « is gained by the stability and consistency
analysis in section 5.
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In the explicit numerical scheme
"t =1+ dtv - (c(Im (1)) VI) +dtaVI ,  (12)

where n is the time index, the potential is added with each
iteration to the result of the RPD term multiplied by d¢, the
time step. This motivates the implementation of the following
PDE rather than (10)

L=V -(c(Im(I))VI)+aV (13)

as RPD evolves eventually to the cartoon model [11] of the
image, to which we would like to add the textural information
contained in V. This indeed yields better results.

5. STABILITY AND CONSISTENCY

Let us determine whether (12) is consistent with (10). Let At
be the time interval and Az the spatial interval. Then, the
numerical scheme operator is

C
Ax?
n n n n+1
=217 + I q) + Vi Iy = I (14)

L(Iy) = 17 +At{ (Frg = 2005+ Iy + 1

Substituting the Taylor expansions of ;41 ; and I Z”J'H into
(14) results in the local truncation error

c

Az?

L(I):I+At{ o

A 4
(AacQIm + 5 Logee + A2,

Azt At?
+1“;1yyyy> + aVI] - {I + A+ =Ty

+0 (AtAz*) + O (AF?) (15)

Substituting (10) into (15) we get

AtcAz? At?
L(I) = BETEE (Lzzazs + Tyyyy) — Tftt
+0 (AtAz") + O (At?) (16)

Hence L (I) tends to zero as (Ax, At) — (0,0) and the nu-
merical scheme is consistent with the PDE (10).

Using both the matrix and von Neumann’s methods we
arrive at the same stability condition

2(Atc—1) < aAtV <0, Atc<1. (17)

6. RESULTS

In the simulations we used the wavelet shrinkage function
from the Matlab wavelet toolbox with the ideal threshold
For RPD we used Gilboa’s Matlab code [3], with the ideal
soft threshold k and stopping time for RPD. We simulated
(13) with the scheme described in [6], except for the ad-
ditional potential term dtV" which is augmented with each

Fig. 2. Comparison of error images: RPD (left), result of
processing with wavelet shrinkage (right). (For better quality
of the detailed differences see [7].)

iteration. After processing several images we noticed that
oo = 0.25 - range works fairly good for most images, where
range is the maximal value for an image pixel, although for
few images smaller oy was needed. Results of processing a
noisy image (SNR=10dB) are compared in Fig. 1. RPD as ex-
pected yields good denoising of smooth areas and preserves
edges. It does result however in partial smoothing of tex-
tural regions (trousers). The wavelet shrinkage doesn’t cope
as well with the smooth areas, but there is almost no loss of
the texture. With potential, texture is preserved and ,interest-
ingly, it denoises smooth regions better than RPD. This is ac-
complished due to the fact that preserving texture during the
process enables longer evolution and, thus, stronger denois-
ing of smooth regions. As far as SNR, RPD reaches 13.8 dB,
wavelet shrinkage 13.9 dB and our scheme manages to enjoy
the advantages of both and yields 14.2 dB. In other cases sim-
ilar improvement was obtained such as 0.5dB and 0.6 dB with
the lenna and peppers images respectively.

The choice of wavelet shrinkage as the corner stone of the
potential is positively re-enforced when examining its final
error image and the one of RPD (Fig. 2). It can be seen
that with RPD the error energy is concentrated in the textural
regions rather then smooth areas or edges, while with wavelet
shrinkage quite the opposite can be seen. We simulated the
scheme with a clean image as the initial condition and only
with the potential term I; = V. The result depicts texture
enhancement (Fig. 3). The contrast of the textural regions is
increased, producing clearer and prominent textures. Images,
where their details and quality can be better compared, and
Matlab codes can be found at [7].

7. CONCLUSIONS

Dealing with texture is essential for a complete image de-
noising. The proposed generalized complex diffusion, in-
corporating Schrédinger’s potential, addresses this demand,
while yielding same or even better results of edge-preserving-
denoising afforded by other schemes. It is important to note
that convergence of the process can be assurred when apply-
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Fig. 1. Processing of a noisy image (SNR=10dB), the lower right corner of the full image shown in Fig. 3. (a) the noisy image,
(b) soft wavelet shrinkage, (c) RPD, (d) with potential. (For better quality of the detailed differences see [7].)

Fig. 3. Processing the original image with the potential term,
depicting enhancement of texture (right). Original image on
left. (For better quality of the detailed differences see [7].)

ing the restrictions obtained from the consistency an stability
analysis. We presently analyze in-depth the generalized com-
plex diffusion equation. We further investigate an automated
solution to the stopping time, and the effects of various para-
meters on image attributes.
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