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ABSTRACT

In this paper, a new technique for designing linear phase 2-D fil-

ter based on semi-definite programming (SDP) is proposed. This

approach allows the design of 2-D filters with accurate cut-off fre-

quency, subject to hard bounds on the frequency response to be

achieved on a standard computer. Using the notion of 2-D trigono-

metric curves, we generalize the 2-D trigonometric Markov-Lukacs

theorem to identify the pass-band and the stop-band in the region of

support. The 2-D filter specifications are expressed as linear matrix

inequalities. We also exploit convex duality to derive SDP formu-

lations of reduced dimensions. Numerical examples illustrating the

advantages of our method are also presented.

1. INTRODUCTION

Two-dimensional (2-D) digital filters and filter banks have

found applications in many different fields and are the subject

of intensive research (see e.g. [4, 8, 15] and the references

therein). Despite the large variety of 2-D filter design tech-

niques [8], 1-D filter based design methods in which the de-

sired 2-D filters are either transformed from 1-D filters [8, 10]

or separable into 1-D filters [3], are still the most popular.

A salient 1-D filter based approach is the McClellan trans-

form method which maps the frequency points of a 1-D FIR

filter into the frequency contours of the desired 2-D filter [10,

11]. This approach does not guarantee a small deviation from

the desired 2-D filter in the support regions, nor an accurate

cut-off frequency. In addition, the designed 2-D FIR filters

are good only if the cut-off frequency is much less than π and

the sharp of both pass-band and stop-band regions are ade-

quately described by the level sets of just unique 2D filter of

low dimension [8]. Although an improvement has been made

to design wide-band FIR filter in [5], it is still very hard to find

a 1-D prototype filter which satisfies the specifications incor-

porated from the 2-D stop-band and pass-band requirements.

There are also extensions of heuristic griding techniques of

1-D filter to 2-D filters [2].

The semi-infinite constraints arising in 1-D filter design

can be effectively addressed by semi-definite programming

(SDP) base on the concept of 1-D trigonometric curves [14].

Although an SDP formulation of the 2-D positive real con-

straints has been developed in [6], the size of the SDP formu-

lation is so large that it can only be applied to the design of

very small 2-D filters.

In this paper, we propose a new approach to the design of

2-D filters. Our approach uses the concept of 2-D trigonomet-

ric curves with new bases introduced and then exploit convex

duality to transform the design problem into an SDP of rea-

sonably moderate dimension. Consequently, desirable 2-D

filter can be designed using standard SDP solvers. In addition,

our approach is able to achieve accurate cut-off frequency for

each support region, and fully meet all other required specifi-

cations.

The paper is organized as follows. In Section 2 we give

an explicit (semi-infinite) optimization formulation for the 2-

D filter design problem. Then, by using a result of algebraic

geometry [12] we show in Section 3, in a very general set-

ting, that the semi-infinite trigonometric constraints can be

addressed by SDP. Dimension reduction techniques for SDP

is developed in Section 4 using a new approach. The prob-

lem dimension is further developed in Section 5 using convex

duality. Numerical results to verify the viability of our result

is presented Section 6 and concluding remarks are given in

Section 7.

The notations used in the paper are rather standard, except

〈A〉 refers to the trace of a square matrix A, so 〈AB〉 = 〈BA〉
for any matrices A and B of an appropriate size. By X ≥ 0
(X > 0) we mean a symmetric positive (strictly positive) def-

inite matrix X . One of the main condition of positive definite

matrices that will be frequently used in the paper is 〈XY 〉 ≥ 0
whenever X ≥ 0 and Y ≥ 0.
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2. 2-D FILTER DESIGN

In this paper we consider the the linear phase four-fold filter
H(z1, z2) which has frequency response

H(Ω) =

nX
i=0

nX
�=0

ai� cos(iω1) cos(�ω2) = 〈AM(Ω)〉 (1)

= ϕT
n (ω1)Aϕn(ω2) (2)

where

Ω = (ω1, ω2); A = [ai�]
n
i,�=0; M(Ω) = ϕn(ω1)ϕ

T
n (ω2) (3)

ϕn(ωi) = (1, cos ωi, cos 2ωi, . . . , cos nωi)
T

(4)

The design of the filter H(z1, z2) involves the selection of the matrix

of filter coefficients A such that the frequency response H(Ω) satisfy

a given set of specifications. These specifications include:

(i) Minimal weighted-square error

Wp

Z
Ωp

|H(Ω) − 1|2dΩ + Ws

Z
ΩS

|H(Ω)|2dΩ (5)

where Ωp = [0, ω1p]× [0, ω2p], Ωs = Ωs1∪Ωs2, Ω1s = [ω1s, π]×
[0, π], Ω2s = [0, ω1s] × [ω2s, π] are pass-band and stop-band of

H(z1, z2) respectively, while dΩ = dω1dω2.

(ii) Pass-band and stop-band peak-errors stay below the respective

tolerances δp > 0, δs > 0, i.e. the semi-infinite constraint

|H(Ω) − 1| < δp ∀(Ω) ∈ Ωp (6)

|H(Ω)| < δs ∀(Ω) ∈ Ωs (7)

With simple calculation the above 2-D filter design problem can be

rewritten as a minimization of a convex quadratic objective function

over semi-infinite constraints

min
A

Wp〈M1pAM2pAT 〉 + Ws〈M1s1AM2s1A
T 〉

+Ws〈M1s2AM2s2A
T 〉 − 2Wp〈MpA〉 s.t. (8)

−δp ≤ 〈A, M(Ω)〉 − 1 ≤ δp ∀(Ω) ∈ Ωp (9)

−δs ≤ 〈A, M(Ω)〉 ≤ δs ∀Ω ∈ Ωs = Ωs1 ∪ Ωs2 (10)

where Mip =
R ωip

0
ϕn(ωi)ϕn(ωi)

T dωi > 0,

Misi =
R π

ωis
ϕn(ωi)ϕn(ωi)

T dωi > 0, i = 1, 2;

M2s1 =
R π

0
ϕn(ω2)ϕn(ω2)

T dω2 > 0,

M1s2 =
R ω1s

0
ϕn(ω1)ϕn(ω1)

T dω1 > 0,
Mp =

R ω1p

0
ϕn(ω1)dω1 ×

R ω2p

0
ϕn(ω2)dω2.

The 2-D semi-infinite constraints (9)-(10) poses the foremost

difficulty in the design of 2-D filters. The simplest method is to

constrain the peak pass-band and stop-band errors on a set of finite

grid points in Ωp and Ωs. However, there is no guarantee that the

constraints (9)-(10) are completely satisfied.

3. SDP AS FUNDAMENTAL TOOL HANDLING
SEMI-INFINITE CONSTRAINTS

The above semi-infinite trigonometric constraints (9)-(10) are par-

ticular cases of the general semi-infinite constraint

g0(Ω) ≥ 0 ∀Ω ∈ {Ω ∈ [0, π]2 : gi(Ω) ≥ 0, i = 1, 2, ..., m},
(11)

where gi(Ω), k = 0, 1, ..., m are trigonometric polynomials in Ω,

i.e.

gi(Ω) =
X

α

giα cosΩα, cosΩα = cos(α1ω1) cos(α2ω2). (12)

To develop semi-definite characterizations of the trigonomet-

ric semi-infinite constraints, we introduce the trigonometric moment

matrices

Mi(Ω) = φi(Ω)φT
i (Ω), i = 1, 2, ... (13)

where

φi(Ω) = (1, cos ω1, cos ω2, cos 2ω1, cos ω1 cos ω2,
cos 2ω2, cos 3ω1, . . . , cos iω2)

T
(14)

Clearly, all moment matrices Mi(ω) are positive semi-definite. We

can prove the following result based on a result of the algebraic ge-

ometry [12].

Theorem 1 The semi-infinite constraint (11) is fulfilled if and only
if g0(Ω) admits the following representation

g0(Ω) = 〈X0Mr0(Ω)〉 +

mX
i=1

gi(Ω)〈XiMri(Ω)〉 (15)

with some r0, ri and X0 ≥ 0, Xi ≥ 0 of appropriate dimensions.

By comparing terms with the same trigonometric powers cosΩα at

the both sides of (15), one can easily obtain the linear relationship

between the coefficients of g0 and entries of matrices X0, Xi, which

together with the constraints X0 ≥ 0, Xi ≥ 0 constitute a set of

semi-definite constraints that is equivalent to (11).

From a practical view point, the following issues are pertinent to the

computational implementation of Theorem 1:

(i) Generally, the numbers r0, ri are not known in advance and they

are potentially high;

(ii) The dimensions of the matrices Mr0 , Mri i.e. (r0 +1)2×(r0 +
1)2 and (ri+1)2×(ri+1)2 increase very quickly as r0, ri increase.

Consequently, the dimensions of the matrix variables X0, Xi, which

are the same as those of Mr0 and Mri , increase so quickly that the

dimension of resultant SDP grows beyond the capacity of current

SDP solvers.

To provide the reader with some perspectives on our developments

in the subsequent sections, we discuss the dimensionality of the po-

tential SDP arising from four 2-D trigonometric semi-infinite con-

straints in (9)-(10), each of them is a particular of (11) with some

g0 of order n and some affine (1-st order) gi, i = 1, 2, 3, 4. For

simplicity, consider n odd, i.e. n = 2k + 1. Based on Theorem 1,

the simplest sufficient condition for each trigonometric semi-infinite

constraint in (9)-(10) is (15) that with the minimal ri = k cho-

sen beforehand to make the highest power on the right side of (15)

match that of the left hand size. Accordingly, the dimension of Xi

is (k + 1)2 × (k + 1)2. Thus, the total number of scalar variables in

the resultant SDP is 5(k + 1)2((k + 1)2 + 1)/2 which is already in

the order of several thousands for a very modest n = 15.

4. DIMENSION REDUCTION WITH FLEXIBLE BASES

In the 1-D case, the numbers r0, ri in (15) are exactly determined

from orders of gi via the trigonometric Markov-Lukacs theorem [14].

The starting point of this section is the following adaptation of The-

orem 1.
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Theorem 2 (Generalized 2-D trigonometric Markov-Lukacs the-
orem) Suppose that g0 is a 2-D trigonometric polynomial of order
n

g0(Ω) =

nX
i=0

nX
�=0

gi� cos(iω1) cos(�ω2)

Then g0(Ω) ≥ 0 ∀ cosΩ ∈ [cos a, cos b] × [cos c, cos d] if

g0(Ω) = (cos ω1 − cos a)(cos ω2 − cos c)〈X1Ψ1(Ω)〉
+(cos b − cos ω1)(cos d − cos ω2)〈X2Ψ2(Ω)〉
+(cos ω1 − cos a)(cos d − cos ω2)〈X3Ψ3(Ω)〉
+(cos ω2 − cos c)(cos b − cos ω1)〈X4Ψ4(Ω)〉

(16)

for some Xi ≥ 0 and Ψi(Ω) ≥ 0 ∀Ω ∈ [0, π]2, i = 1, 2, 3, 4.

Note that we don’t impose a structure like (13) of moment matrices

to Ψi(Ω) in (16). A novel and effective construction for them is the

first objective in this section.

Note that

(cos ω1 − cos a)(cos ω2 − cos c) = T11(Ω) − a1

(cos b − cos ω1)(cos d − cos ω2) = T21(Ω) − a2

(cos ω1 − cos a)(cos d − cos ω2) = T31(Ω) − a3

(cos ω2 − cos c)(cos b − cos ω1) = T41(Ω) − a4

(17)

where

T11(Ω) = − cos c cos ω1 − cos a cos ω2 + cos ω1 cos ω2

T21(Ω) = − cos d cos ω1 − cos b cos ω2 + cos ω1 cos ω2;
T31(Ω) = cos d cos ω1 + cos a cos ω2 − cos ω1 cos ω2;
T41(Ω) = cos c cos ω1 + cos b cos ω2 − cos ω1 cos ω2;
a1 = − cos a cos c; a2 = − cos b cos d;
a3 = cos a cos d; a4 = cos c cos b (18)

For j = 1, 2, 3, 4, the following definition is consistent with (18)

Tj0(Ω) ≡ 1;
Tji(Ω) = 2Tj(i−1)(Ω)Tj1(Ω) − Tj(i−2)(Ω), i = 2, 3, ..., (19)

Lemma 1 For any i, � the following relation holds true

Tji(Ω)Tj�(Ω) =
1

2
(Tj(i+�)(Ω) + Tj|i−�|(Ω)) (20)

Next, define the following base

Ψj(Ω) =

2
664

1
Tj1(Ω)

....
Tjk(Ω)

3
775

2
664

1
Tj1(Ω)

....
Tjk(Ω)

3
775

T

(21)

The following proposition is a direct consequence of Theorem 2.

Corollary 1 For p = (a, b, c, d), let Cp be the cone defined by

Cp = {X ∈ R(2k+2)×(2k+2) :

〈X, M(Ω)〉 ≡
4X

i=1

〈Xi, (Ti1(Ω) − ai)Ψi(Ω)〉, Xi ≥ 0}, (22)

with Tj1(Ω) and ai given by (18).
If X ∈ Cp then

〈XM(Ω)〉 ≥ 0 ∀ cos Ω ∈ [cos a, cos b] × [cos c, cos d] (23)

The above result states that the cone Cp is a subset of the n−order 2-

D trigonometric polynomials that are nonnegative on [cos a, cos b]×
[cos c, cos d].
In comparison with the dimension (k+1)2×(k+1)2 of the variables

Xi in (15) for the simplest case that we mentioned at the end of the

previous section, the dimension of Xi in (22) is (k + 1) × (k + 1),

i.e. the substantial dimension reduction has been achieved with the

new representation (22).

Before closing this section, we remark that our approach is also di-

rectly applicable to diamond-shaped constraint [1], fan-shaped con-

straint, and more sophisticated shaped constraints involving elliptic

or parabolic ones.

5. DUAL SDP FOR FURTHER DIMENSION REDUCTION

We now turn our attention back to the 2-D filter design problem that

requires minimizing the quadratic objective (8) over the 2-D trigono-

metric semi-infinite constraints (9)-(10). The crucial step is to show

that the dual cone C∗
p of Cp (defined by (22)) is described by the

following SDP of moderate dimension

C∗
p = {Y ∈ R(2k+2)×(2k+2) : Θi(Y ) ≥ 0, i = 1, 2, 3, 4} (24)

where Y and Θi(Y ) are obtained from M(Ω) and (Ti1(Ω)−ai)Ψi(Ω)
through the variable change

cosΩα → yα = yα1α2 ∀α (25)

i.e. cos �ω1 → y�0, cos �ω2 → y0�, cos iω1 cos �ω2 → yi�.

Now, based on the Corollary 1, we effectively strengthen the semi-

infinite constraints (9)-(10) by the semi-definite constraints

A − (1 − δp)E1 ∈ Cp, −A + (1 + δp)E1 ∈ Cp

A + δsE1 ∈ Csi , −A + δsE1 ∈ Csi , i = 1, 2
(26)

where E1 ∈ R(2k+2)×(2k+2) with E1(0, 0) = 1 and E1(i, �) = 0
for i + � > 0 and p = (ω1p, 0, ω2p, 0) while s1 = (π, ω1s, π, 0),

s2 = (ω1s, 0, π, ωs2).

The optimization problem (8), (26) thus belongs to the following

class of problems

min
X

LX
i=1

〈M1iXM2iX
T 〉 − 〈MX〉

s.t AiX + Di ∈ Ci, i = 1, 2, · · · , m,

(27)

where Ci are cones like Cp defined by (22) and thus their dual cones

C∗
i are completely described by semi-definite constraints like (24),

M1i > 0, M2i > 0 and M are given matrices.

Then, using the Lagrange multiplier approach, the dual of SDP (27)

can be shown as

max
Y (i),Xopt

[−
mX

i=1

〈Y (i)Di〉 −
LX

i=1

〈M1iXoptM2iX
T
opt〉] : Y (i) ∈ C∗

i ,

2

LX
i=1

M2iX
T
optM1i − (M +

mX
i=1

Y (i)Ai) = 0,

(28)

which is an SDP because the objective is a convex quadratic func-

tional in Y (i), Xopt and the cones C∗
i are described by the SDP like

(24). Solving the SDP (28) yields the optimal solutions to the primal

and dual optimization problems (27) and (24).
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6. SIMULATION

This section presents numerical results obtained using the techniques

described above. These simulations were performed using SeDuMi

[13] and the its interface [9] in a MATLAB environment.

Two design examples of 2-D FIR filter are illustrated. In the first

example, the desired frequency response of the four-fold 2D-FIR

filter was a 19 × 19 square as shown in Fig 1(a). The specifications

for the filter were ω1p = ω2p = 0.4π, ω1s = ω2s = 0.6π, δp =
δs = 0.1.
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(b) Example 2

Fig. 1. Frequency response of four-fold 2D-FIR filters.

In example 2, we consider a 2-D filter with narrow transition

band (ω1p = ω2p = 0.4π, ω1s = ω2s = 0.5π, δp = δs = 0.1) and

bigger size (27 × 27).

Figures 1(b) show the frequency response of the 2D-FIR filter for the

second example. As can be seen, there is a steep decrease between

pass-band and stop-band. The numerical results of the matrix A in

these two examples can be provided if requested.

7. CONCLUSION

We have presented a new technique for designing linear phase 2-D

filter based on moderate SDP. The technique is very flexible and is

capable of achieving accurate cut-off frequency and other practical

sharp specifications for 2 − D filters of practical length.
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